
UNIVERSITÄT LINZ
JOHANNES KEPLER

JKU

Technisch-Naturwissenschaftliche

Fakultät

Inconsistencies in Decision Modeling

DISSERTATION

zur Erlangung des akademischen Grades

Doktor

im Doktoratsstudium der

Technischen Wissenschaften

Eingereicht von:

DI (FH) Alexander Nöhrer

Angefertigt am:

Institut für Systems Engineering und Automation

Beurteilung:

Univ.-Prof. Dr. Alexander Egyed, M.Sc. (Betreuung)
Univ.-Prof. Dr. Armin Biere

Linz, Juni, 2012

ii

Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht
habe.

Die vorliegende Dissertation ist mit dem elektronisch übermittelten Textdokument
identisch.

Linz, am 1. Juni 2012

Alexander Nöhrer

iii

iv

Danksagung

An dieser Stelle möchte ich mich bei all den Menschen bedanken, die mich im Laufe
meines Studiums unterstützt haben. Ich möchte mich bei den Lektoren aller Vorle-
sungen sowie Übungen bedanken, denn im Nachhinein betrachtet konnte ich aus jeder
Vorlesung und Übung etwas mitnehmen.

Besonders bedanken möchte ich mich bei meinem Dissertationsbetreuer Alexander
Egyed. Zum Einen für seine Zeit und sein für mich wertvolles Feedback während der Er-
stellung dieser Arbeit. Zum Anderen dafür dass er mir diese Arbeit ermöglicht hat und
mit Rat und Tat im Zuge der Entstehung zur Seite stand und immer für Diskussionen
offen war. Auch bei meinem Zweitbeurteiler Armin Biere möchte ich mich bedanken
für seine Hilfe. Weiters will ich mich beim Österreichischen FWF für die Finanzierung
der Forschungsarbeit für meine Dissertation bedanken (P21321-N15).

Bei meinen Freunden möchte ich mich für das entgegengebrachte Verständnis be-
danken, dass ich während des Studiums im fernen Oberösterreich, nicht immer Zeit für
sie hatte.

Abschließend möchte ich mich bei den wichtigsten Menschen in meinem Leben be-
danken: meiner Familie. Danke, dass ihr Alle an mich geglaubt und mir dieses Studium
ermöglicht habt.

Allen anderen die sich bis jetzt noch nicht angesprochen fühlen, will ich ebenfalls
meinen Dank aussprechen, ich habe euch nicht vergessen.

v

vi

Kurzfassung

Inkonsistenzen sind Teil des täglichen Alltags in der Software Entwicklung. Aus die-
sem Grund ist es wichtig wie mit Inkonsistenzen umgegangen wird. Obwohl in einigen
Software Entwicklungsdomänen das Leben mit Inkonsistenzen unterstützt wird, ist es
in der Domäne der Entscheidungsfindung nicht erlaubt – entweder wird es unterbun-
den oder man wird dazu gezwungen Inkonsistenzen sofort zu beheben. Hauptsächlich
Schuld daran sind die in dieser Domäne üblicherweise eingesetzten Reasoning Engines,
da sie standardmäßig nicht mit Inkonsistenzen umgehen können, bzw. keine sinnvollen
Resultate mehr liefern sobald mit inkonsistentem Wissen geschlussfolgert wird.

Diese Dissertation greift das Problem mit Inkonsistenzen während der Entschei-
dungsfindung umgehen zu können auf. Zwei Ansätze werden vorgestellt, einer der dabei
hilft Inkonsistenzen zu vermeiden, indem den Entscheidungsträgern möglichst viel Frei-
heit gegeben wird in der Reihenfolge in der Entscheidungen zu treffen sind, unterstützt
jedoch auf sinnvolle Weise um möglichst schnell das Ziel der Entscheidungsträger zu
erreichen. Der zweite Ansatz vergleicht verschiedene Strategien um mit Inkonsisten-
zen während der Entscheidungsfindung umgehen zu können, wobei sich eine Strategie
herauskristallisiert, die garantiert, dass bestehende Entscheidungsfindung Automatisie-
rungen auf Basis von Schlussfolgerungen korrekt sind (zu Kosten der Vollständigkeit).

Obwohl der Fokus dieser Dissertation primär auf den Technologien “hinter den
Kulissen” ist, wird ein Prototyp vorgestellt mit dessen Hilfe diese visualisiert werden
können. Verschiedene Evaluierungsszenarien liefern Einblicke in die Effektivität unse-
rer Ansätze und deren Kosten. Es wird sich zeigen, dass unsere Benutzerführung wäh-
rend des Entscheidungsfindungsprozesses, in Bezug auf die Minimierung des benötigten
Aufwands des Entscheidungsträgers, fast optimal ist und der Ansatz schnell genug ist
um interaktiv eingesetzt zu werden. Zusätzlich wird sich zeigen, dass das Ausmaß der
Unvollständigkeit beim Schlussfolgern beim Leben mit Inkonsistenzen annehmbar ist.
Außerdem kann sich das Tolerieren von Inkonsistenzen sogar positiv auf die Behebung
jener auswirken.

Die wichtigsten Beiträge dieser Dissertation sind: i) Eine einzigartige Perspektive
auf die Probleme mit Inkonsistenzen während des Entscheidungsfindungsprozesses; ii)
Ein Ansatz der es erlaubt korrekt mit SAT-Solvern in der Präsenz von Inkonsistenzen
zu schlussfolgern, um so vorhandene Automatisierungen unverändert weiter nutzen zu
können; iii) Ein Ansatz der den kürzesten Pfad durch eine Reihe von voneinander ab-
hängigen Entscheidungen bestimmen kann; iv) Eine Basis für zukünftige Forschung in
generischen Modellierungsszenarien; v) Eine ausführliche Evaluierung von verschiede-
nen Aspekten und Technologien die in unseren Ansätzen Verwendung finden.

vii

viii

Abstract

Inconsistencies are a fact of life in software engineering. As a consequence, dealing
and managing inconsistencies plays an important role in software engineering. How-
ever, while in some software engineering domains there exists support for living with
inconsistencies, in the domain of decision-making they usually are disallowed – either
by preventing them or requiring them to be fixed right away. This stems mainly from
the fact that common reasoning engines used in the decision-making domain do not
handle inconsistencies well out of the box, in fact most of them fail to produce usable
output after an inconsistency has been discovered.

This thesis tackles the problem of managing and dealing with inconsistencies during
decision-making. It presents two approaches, one that helps preventing inconsistencies
by giving decision makers the maximum amount of freedom possible, while still provid-
ing meaningful guidance to reach one’s goals faster. The other approach presents differ-
ent reasoning strategies for living with inconsistencies during decision-making, where
one strategy in particular is very promising because it ensures that decision making
automations remain working correctly even after an inconsistency is encountered (at
the expense of completeness).

While the focus of this thesis is primarily on the technologies “behind the curtains”,
it will also present one possibility of how to use and visualize these technologies in a
prototype tool. Several evaluation scenarios will provide insight into the effectiveness
of our approaches and their respective costs. It will show that our guidance calculation
with respect to minimizing user input is nearly optimal and fast enough to be used
interactively. It will also show that the cost of living with inconsistencies is acceptable,
the level of incompleteness is reasonable and that living with inconsistencies can even
have a positive impact on resolving inconsistencies.

The key contributions of this thesis are: i) A unique perspective on the prob-
lems currently encountered during decision-making involving inconsistencies; ii) An
approach that allows correct reasoning with SAT-Solvers in the presence of inconsis-
tencies and automations to continue working without any adaptions; iii) An approach
on how to determine the shortest path through a series of related decisions; iv) A basis
for further research in general modeling scenarios; v) An extensive evaluation of the
different aspects and techniques used in our approach.

ix

x

Contents

Abstract x

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Outline of our Approach . 4
1.3 Project History . 5
1.4 Contributions of this Thesis . 6
1.5 Structure of this Thesis . 7

2 Preliminaries 9
2.1 Reasoning . 9

2.1.1 Consistency Management . 9
2.1.2 Boolean Satisfiability Problems 11

2.2 Product lines . 12
2.2.1 Feature Models . 12
2.2.2 Decision Models . 14
2.2.3 Reasoning with Product Lines 16

2.3 Guidance . 16

3 Background 17

3.1 Decision Models . 17
3.1.1 Questions and Choices . 17
3.1.2 Relations . 18
3.1.3 Illustrative Example . 20

3.2 Decision-Making . 22
3.3 Inconsistencies during Decision-Making 23

3.3.1 Strategies for Preventing Inconsistencies 24
3.3.2 Strategies for Managing Inconsistencies 26

3.3.2.1 Fix Right Away Strategies 27
3.3.2.2 Tolerating Strategies . 28

xi

CONTENTS

4 Vision and Goals 31
4.1 Automation is good! . 31
4.2 Tools adapting to users, not the other way around! 32
4.3 Imposing solutions only on request by users! 33
4.4 Goals . 33

5 Approach 35

5.1 Reasoning Architecture Overview . 35
5.2 Guidance Calculation . 38

5.2.1 Pitfalls . 38
5.2.2 Approach . 39
5.2.3 Computing the Ideal Solution . 40
5.2.4 Approximating the Ideal Solution 42
5.2.5 Choice Gain Algorithm . 47

5.3 Living with Inconsistencies . 48
5.3.1 SAT-based Reasoning in the Presence of Inconsistencies 48
5.3.2 SAT Concepts that deal with Managing Inconsistencies 49
5.3.3 Different Isolation Strategies . 49

5.3.3.1 Disregard All Strategy 49
5.3.3.2 Skip Strategy . 50
5.3.3.3 MaxSAT Strategy . 50
5.3.3.4 HUMUS Strategy . 51

5.3.4 Discussion of Isolation Strategies 52
5.3.4.1 Incomplete Reasoning 52
5.3.4.2 Incorrect Reasoning . 53
5.3.4.3 Revisitation . 53

6 Proof of Concept 55

6.1 Goals . 55
6.2 Tool Architecture . 55
6.3 Visualization Aspects . 56

6.3.1 Decision Models . 56
6.3.2 Guidance . 57
6.3.3 Inconsistencies . 58

7 Evaluation 61

7.1 Guidance Calculation Results . 61
7.1.1 Case Studies . 61
7.1.2 Computational Complexity . 64
7.1.3 Memory Consumption . 65

7.2 Living with Inconsistencies Results . 65
7.2.1 Objectives and Questions . 66
7.2.2 Execution . 66
7.2.3 Results . 67

xii

CONTENTS

7.2.3.1 Incomplete Reasoning (Single Defect) 68
7.2.3.2 Incorrect Reasoning (Single Defect) 69
7.2.3.3 Revisitation (Single Defect) 70
7.2.3.4 Multiple Defects . 70
7.2.3.5 Scalability . 71

7.3 Potential of Living with Inconsistencies to Fix Inconsistencies 72
7.3.1 Automatically Fixing Inconsistencies 72
7.3.2 Automatically Reducing Choices for Fixing 73
7.3.3 Fixing Multiple Defects . 74

7.4 Implications for Decision-Making . 75
7.5 First Results on the Feasibility of our Approach in UML Modeling . . . 76

8 Related Work 81

8.1 Other Reasoning Techniques . 81
8.1.1 Constraint Satisfaction Problems 81
8.1.2 Binary Decision Diagrams . 82
8.1.3 Satisfiability Modulo Theories . 82
8.1.4 Paraconsistent Logic . 82

8.2 Decision-support Systems . 83
8.3 Operational Research . 83
8.4 Dialog Design . 83
8.5 Expert Systems . 84
8.6 Bayesian networks . 84

9 Conclusions and Future Work 85

9.1 Summary . 85
9.2 Contributions . 86
9.3 Threats to Validity . 86

9.3.1 Guidance Calculation . 86
9.3.2 Living with Inconsistencies . 87

9.4 Future Work . 88

Bibliography 89

Glossary 97

A C2O – Configurator 2.0 Manual 99

A.1 Description . 99
A.2 Third Party Libraries . 99
A.3 GUI Explanation . 100

A.3.1 Questions (1) . 100
A.3.2 Choice list (2) . 101
A.3.3 Buttons . 101
A.3.4 Menu - File . 102

xiii

CONTENTS

A.3.5 Menu - Options . 102
A.4 FAQ . 103

A.4.1 Is the source code publicly available? 103
A.4.2 Can I use other Data Types than String as question answers, or

have multiple choice answers? . 103
A.4.3 Does this technology work with other type of models? 103

B Model XML Format 105
B.1 Overview . 105
B.2 Relations . 106

B.2.1 Constraint Relations . 106
B.2.2 Relevancy Relation . 106
B.2.3 CNF Relation . 107

B.3 Examples . 108
B.3.1 Example.xml . 108
B.3.2 Car.xml . 109

Curriculum Vitae Alexander Nöhrer 113

xiv

List of Figures

1.1 Abstraction of a typical modeling scenario. 3
1.2 Decision-making approach overview. 4

2.1 Overview of SAT terminology. 11
2.2 Example of a basic feature model . 13
2.3 Example of a basic decision model. 14

3.1 Illustrative decision model for buying a laptop. 20
3.2 Graphical illustration of the decision-making process with our example. 22
3.3 Graphical abstraction of the decision-making process over time. 23
3.4 Inconsistencies during decision-making. 24
3.5 How to manage inconsistencies during decision-making. 26
3.6 Inconsistency fixing strategies. 27

5.1 Reasoning architecture overview. 36
5.2 Valid configurations considering relations. 41
5.3 Impact of answering questions. 46

6.1 Overview of the C2O Configurator architecture. 56
6.2 Visualization of the illustrative example in the C2O Configurator. . . . 57
6.3 Visualization of the guidance calculation. 57
6.4 Visualization of derived decisions. 58
6.5 Explaining an inconsistency. 58
6.6 Causing an inconsistency. 59
6.7 Causing an inconsistency with trust. 59
6.8 Choices impacting the inconsistency. 60
6.9 Reducing the number of possible fixes for an inconsistency. 60
6.10 Automatically resolving an inconsistency. 60

7.1 Comparison optimality of the guidance calculation. 63
7.2 Overview of t-test results comparing our guidance calculation approach

to a random selection. 64
7.3 Response time measurements. 65

xv

LIST OF FIGURES

7.4 Incomplete reasoning progression runs with HUMUS isolation strategy
for the Dell1 model. 68

7.5 Incomplete reasoning progression results combining all case study systems. 69
7.6 Incorrect reasoning progression results combining all case study systems. 70
7.7 Incomplete reasoning progression results combining all case study sys-

tems with multiple defects. 71
7.8 Incorrect reasoning progression results combining all case study systems

with multiple defects. 72
7.9 Distribution of fixable situations without additional user interaction. . . 73
7.10 Overview over the number of possible fixes. 74
7.11 Normalized progression of fix reduction. 75
7.12 Fixing locations for three UML Inconsistencies. 77
7.13 Reduction of fixing locations based on overlap size. 78

A.1 Overview of the C2O Configurator GUI. 100
A.2 Searching for questions. 101
A.3 File menu. 102
A.4 Options menu. 102

xvi

List of Tables

3.1 Illustration of the decision-making process with our example in tabular
form. 23

3.2 Configuration progression of the example given in Figure 3.1. 25

4.1 Precise goals based on our research questions. 34

5.1 Isolation strategies based on the example in Table 3.2. 50

7.1 Case studies overview . 62
7.2 Decision models used for evaluation. 65
7.3 Scalability test results on artificial SAT problems. 71
7.4 Overview of analyzed UML models. 77

xvii

LIST OF TABLES

xviii

Chapter 1

Introduction

“. . . zwar hab ich ka Ahnung

wo ich hinfahr, aber dafür

bin i g’schwinder durt!” —

. . . although I have no idea where

I am going, I will be there faster!

– Gerhard Bronner

This quotation in many ways describes the motivation and goals of this thesis. Guiding
and supporting software engineers and end-users to meet their demands faster, even if
they do not know exactly what their requirements are at the beginning. This thesis
presents ideas and realizations thereof, for managing inconsistencies during decision-
making, which are stumbling blocks in reaching ones goals and resolving them can be
time consuming tasks to finish. Since the most precious resource during software engi-
neering is the software engineer, this resource should be used as little as possible, but
as much as necessary. This work demonstrates that any software engineering task that
involves decision-making can be optimized to ensure just that: to automatically guide
the software engineer such that some inconsistencies can be avoided, while still keeping
the human interaction to a minimum; and dealing with the remaining inconsistencies
without disturbing the workflow.

1.1 Background and Motivation

Model driven engineering (MDE), also known as its approaches model driven develop-
ment (MDD) or model driven architecture (MDA), has come far since its beginnings and
has many advantages over traditional software engineering methods [1, 2]. However,
lack of adequate and suitable tool support is still an issue [1]. This lack of adequate
tool support partially stems from the fact that models contain inconsistencies, and in-
consistencies in models imply the presence of defects. For the software engineer, the
main benefit of tolerating inconsistencies is the ability to continue working despite this

1

1. INTRODUCTION

presence of defects. This is useful when it is neither obvious how to fix the inconsisten-
cies nor important to do so right away. Indeed, many inconsistencies can be tolerated.
20 years ago, Balzer wrote that “software systems, especially large ones, are rarely
consistent (. . .) yet no principled basis exists for managing the development during the
periods of inconsistency”. He argued that inconsistencies should be detected and com-
municated to the developers; however, developers should not be hindered in continuing
their work despite the presence of inconsistencies.

In model-driven software engineering, it is state-of-the-practice to allow inconsisten-
cies [3, 4]. Modeling tools tend to indicate inconsistencies, but do not force developers
to fix them right away [5]. This is especially important since software models typ-
ically contain many defects. However, in many other software engineering domains,
tolerating inconsistencies is disallowed (i. e., usually by preventing decisions that cause
inconsistencies). And there are good reasons for disallowing inconsistencies. First and
foremost, many reasoning engines are rendered partially or fully useless in the presence
of inconsistencies. Even if the reasoning engines were able to function (instead of failing
outright), the implications on the quality of the results are typically not understood
(clearly, we cannot expect a reasoning engine to compute correct results in the presence
of inconsistent, aka erroneous input). This is a severe problem because as Balzer said,
inconsistencies are a fact of (software engineering) life and to date reasoning engines
support many vital automations such as analyzing properties of systems, understanding
the effects of design decisions, helping configure products, etc.

While the tolerance to inconsistencies is state-of-the-practice in model-driven soft-
ware engineering, the issues that surround inconsistencies are largely ignored in many
other domains but of essential importance. It is far more important to fix the cause
of an inconsistency (defect) than just the symptoms (the inconsistencies themselves).
After all, the goal of an engineer is not just to resolve one inconsistency at a time but
in the end to get a consistent model with all defects having been identified and re-
solved. While inconsistencies can be resolved by fixing the underlying defects, we must
recognize that those defects may also have caused additional inconsistencies at other
locations. In certain situations this could be reversed, meaning that several defects
cause the same inconsistency. An example for such a situation would be a requirement
change in an already consistent model. This requirement change should lead to sev-
eral model changes where initial changes are likely to conflict with other existing parts
of the model. As a consequence the first change(s) introduce inconsistencies, though
these first changes would not be defects because they are the initial steps of a larger
requirements change. It follows that the defects must be other model elements that
need to be changed. Note that in this context, the term defect may be misleading
because propagating a change is not the same thing as fixing a defect; however, the
same principles apply and we consider them quite analogous. This basic idea is not
entirely new and fairly established in the compiler community dating back as early as
1982 when Johnson and Runciman [6] wrote: “It is important to distinguish between
an error diagnosis and error reporting. Correct error diagnosis must rely upon the
programmer as it may depend upon intentions that are not expressed in his program.

2

1.1 Background and Motivation

Figure 1.1: Abstraction of a typical modeling scenario.

The compiler’s job is correct error reporting using a form and content of reports most
likely to help the programmer in error diagnosis. We can compare error reports to the
symptoms of a sick patient: the location at which the error is detected is not necessarily
its source.”

As stated before, we are interested in managing inconsistencies to support users in
reaching their goals faster in modeling scenarios. As depicted in Figure 1.1, there coexist
two sides to this problem: The user interface aspects of how to communicate certain
things to the user in an intuitive and simple way and the technologies / approaches
“behind the curtains” – some sort of reasoning engine. Figure 1.1 in addition points
out that there are different use cases involved in modeling scenarios. On the one side
we have engineers that define the meta-models and additional rules that have to be
followed. On the other side we have users of modeling tools, which of course also can
be engineers, that create / modify / work with models.

Although both sides are important, we are focusing primarily on the technologies
“behind the curtains”. It is our belief, that user interfaces can only be as helpful as the
information provided to them and therefore depend heavily on technologies / approaches
“behind the curtains”. In addition improvements on the reasoning engine can benefit
different use cases.

While originally the research started out to be for modeling scenarios in general, we
decided to narrow our area of research and limit the number of variables, by concen-
trating on one specific modeling scenario namely decision-making. The main reasons
being:

(i) All available decisions encountered during decision-making are determined by the
decision model behind, making it a “simple” modeling scenario in comparison to
for example modeling with the Unified Modeling Language (UML) [7]. Except
for decision model evolution, making decisions by selecting choices (model) from
a correct decision model (meta-model) is a more or less trivial task with no
surprises. Each model element has predefined choices in the decision model to
choose from, as a result each model element can only be modified, but not deleted
and new model elements cannot be created. While this is a simplification of more

3

1. INTRODUCTION

Figure 1.2: Decision-making approach overview.

general modeling scenarios, the same problems rise in this simpler environment
of decision-making when it comes to inconsistencies.

(ii) Concepts developed in this “simple” modeling scenario should be adaptable to
more general modeling scenarios and provide insights in what is possible and
useful from a user’s perspective.

(iii) Concepts that cannot be utilized due to computational complexity in general
modeling scenarios, are easier to realize in the decision-making scenario. We
thus can be more creative without being too concerned about computational
complexity and identify solutions, that are worth pursuing in general modeling
scenarios.

1.2 Outline of our Approach

As mentioned so far, our intend is to help users to avoid inconsistencies and help them
dealing with the ones that cannot not be avoided. Our approach is based on using
a SAT-Solver for reasoning purposes to realize just that. SAT-Solvers are reasoning
engines that check Boolean formulae, or to be more specific, clauses in conjunctive
normal form (CNF) for their satisfiability [8]. While encoding decision models and
reasoning about them with SAT-Solvers is not new, we will show how to combine
techniques and approaches that exist in the SAT community with information about
the history of decisions made, to our advantage.

Figure 1.2 depicts an overview of our approach. First an engineer defines ques-
tions (1) and relations between those questions (2). With those serving as input,
our reasoning engine based on a SAT-Solver then ranks the questions with respect to
requiring minimal user input and suggests this ranking to the decision maker (3). Fur-
thermore this ranking gets updated with every decision made by the user. Additionally
the reasoning engine provides the user with feedback on effects of decisions as well
as explanations why certain decisions are not allowed any longer (4). If the decision
maker insists on making inconsistent decisions, our reasoning engine will isolate those

4

1.3 Project History

inconsistencies from reasoning (5), allowing correct reasoning and other automations to
continue working correctly, like for instance the ranking of questions (3) and the feed-
back to the decision maker (4). However, this is not restricted to those automations,
but in fact is true for any kind of SAT-based automations.

In addition to our techniques “behind the curtains”, we will also present our config-
urator tool in Chapter 6 to illustrate how these techniques could be used for guidance
in the user interface. The main ideas are to show almost all questions at once in a
sort of a word cloud, bigger fonts representing a higher ranking, leaving it up to the
decision maker to choose a question to answer. When a question gets selected, the list
of choices how to answer this question is shown. For each possible answer either the
effect of this answer can be viewed or the explanation why it is not allowed anymore.
After making a decision the word cloud adapts itself to the new ranking, questions that
are already answered will additionally show those answers. Inconsistent decisions are
visually different from consistent ones and although the decision maker still can see
how those questions were answered, these answers will be ignored in the reasoning en-
gine. If the decision maker changes decisions so that inconsistencies are resolved, either
automatic changes to inconsistent decision are visualized or the original decisions get
accepted and are again used for reasoning.

1.3 Project History

The research for this thesis was done in the course of the the Austrian Science Fund
(FWF1) project P21321-N15. The project started in March 2008 and is expected to end
in 2012. Generally speaking the project is about researching methodologies on how to
better understand the cause of inconsistencies and how to propose solutions for fixing
them. One part of obtaining this knowledge is to understand design model changes
and how they affect other models, or even the same model. Once these basic things are
understood, resolving inconsistencies should become easier and better tailored to users’
needs – which is vital to the future of software modeling and software engineering in
general.

Publications that were created during our research covering different aspects and
their relation to this thesis, will be explained next in detail. The publications are listed
in the order they were finally published, which does not reflect the order, the work was
done in.

(P1) Conflict Resolution Strategies during Product Configuration [9] describes our ini-
tial ideas and vision of how to avoid and deal with inconsistencies that rise in
decision-making scenarios. It further provides an overview of possible ways of how
to handle inconsistencies during decision-making and is the basis for Chapter 3
and 4.

(P2) Utilizing the Relationships Between Inconsistencies for more Effective Inconsis-
tency Resolution [10], while not an integral part of this thesis, this paper already

1http://www.fwf.ac.at

5

http://www.fwf.ac.at

1. INTRODUCTION

looks beyond decision-making and takes the first step in the domain of UML
modeling, showing the parallels of inconsistencies in UML modeling and decision-
making. Some of the background information and motivation in Section 1.1 stem
from this paper.

(P3) C2O: A Tool for Guided Decision-making [11] is a short tool paper, that shows
off our decision-making tool, which is the basis for Chapter 6.

(P4) Positive Effects of Utilizing Relationships between Inconsistencies for more Effec-
tive Inconsistency Resolution: NIER Track [12] is the continuation of our work
in (P2) [10] and is about first results in the domain of UML modeling, which will
be briefly introduced in Chapter 7.

(P5) Optimizing User Guidance during Decision-Making [13] covers the aspect of how
to avoid inconsistencies during decision-making, by giving the end-users the free-
dom to make decisions in whatever sequence they prefer. On the other hand
it proposes a guidance strategy, based on reducing the needed user input to a
necessary minimum, that allows guiding users without imposing a sequence, that
even can benefit from users temporarily ignoring the guidance. Many details of
this paper can be found in Chapter 5 and evaluations thereof in Chapter 7.

(P6) Managing SAT Inconsistencies with HUMUS [14] deals with the applicability of
the HUMUS (High-level Union of Minimal Unsatisfiable Sets) to explain, toler-
ate and fix inconsistencies during decision-making and also discusses its general
applicability in other domains. A detailed explanation of what HUMUS exactly
is and how it works will be given in Chapter 5.

(P7) A Comparison of Strategies for Tolerating Inconsistencies during Decision-Mak-
ing [15], covers the aspect of how to tolerate and live with inconsistencies that
could not be avoided. It also provides a detailed analysis of how the presence
of inconsistencies influences reasoning, in terms of completeness and correctness,
and compares different techniques that could be used for tolerating inconsistencies
in SAT-based reasoning. Many details of this paper can be found in Chapter 5
and evaluations thereof in Chapter 7.

1.4 Contributions of this Thesis

In general, this thesis contributes to the research area of decision-making and areas that
involve decision-making. Guided decision-making is quite common whenever software
engineers desire to restrict the space of possible answers: towards the end user (e. g.,
installation wizards or e-commerce) or towards fellow software engineers (e. g., product
lines or process configurations). As such besides contributing to software engineering
research, it may also benefit practitioners that are looking for new solutions and want
to adopt them in their products.

The key contributions of this thesis are:

6

1.5 Structure of this Thesis

(i) A unique perspective on the problems currently encountered during decision-
making combined with a vision and approach, that may inspire other researchers
to think about the needs of the most important resource in software engineering
namely the software engineer. The most important need being the freedom to
make decisions and resolve inconsistencies the way the engineer prefers to. Not
the other way around, where the tools need them to make decisions in a certain
sequence and need them to fix inconsistencies right away (cf. Chapters 3, 4,
and 5).

(ii) An approach that allows correct reasoning with SAT-Solvers in the presence of
inconsistencies at the expense of marginally more incomplete reasoning, thus also
allowing any existing automations to work correctly in the presence of inconsis-
tencies without adaptions needed (cf. Chapter 5).

(iii) An approach on how to determine the near optimal path through a series of
related questions to any possible configuration, without knowing in advance which
configuration it is going to be (cf. Chapter 5).

(iv) A basis for further research in general modeling scenarios (cf. Chapter 7). We
also will provide an assessment on the feasibility, based on preliminary results, of
applying these techniques to general modeling scenarios in Section 7.5.

(v) An extensive evaluation of the different aspects and techniques used in our ap-
proach (cf. Chapter 7). The results of the evaluation are valuable for researchers
and practitioners alike, as they show how effective these techniques are and also
provide insights in what is possible.

1.5 Structure of this Thesis

This thesis is structured as follows: Chapter 2 will explain preliminaries and state-of-
the-art, which serve as basis for this thesis. In Chapter 3 the world and terminology as
we see it will be described in detail, including an illustrative example that will be used
throughout this thesis to explain and highlight certain problems and approaches. The
chapter will be round off with a description of the problems we wanted to tackle with
our research. Chapter 4 will then provide insight into our vision and goals of how to
tackle these problems. It will be followed by Chapter 5, which will give an overview of
our approach and provide detailed explanations of different aspects, that were needed
to realize our visions and goals. In Chapter 6 we will present a end-user tool, that
was developed to show off the “behind the curtains” technologies we developed, in
order to guide the user through the process of decision-making while dealing with
inconsistencies. Representative case studies combined with extensive evaluations, for
the different aspects we were aiming at with our goals, will then be used to demonstrate
the feasibility and usefulness of our approach in Chapter 7. After that we will discuss
similarities and differences of our approach with related work in Chapter 8. Finally,

7

1. INTRODUCTION

this thesis will be concluded in Chapter 9 with a summary of our contributions and an
outlook to future work.

8

Chapter 2

Preliminaries

“ Before everything else, getting

ready is the secret of success. ”
– Henry Ford

In this chapter we will provide the preliminaries needed for our approach and state-of-
the-art technologies our approach is build on. In the next Section 2.1 a brief overview
of the reasoning techniques relevant to our approach will be given, focusing on the
application and results of those techniques instead of explaining the inner workings in
great detail. After that we will provide an introduction into product lines in Section 2.2.
And the chapter will be round off in Section 2.3 with a short introduction to guidance.

2.1 Reasoning

Consistency management cannot be realized without some sort of reasoning engine.
Model checking in general depends largely on some sort of reasoning that checks spec-
ifications and rules, as already pointed out in Figure 1.1. However, reasoning can be
used for more than just the verification of rules. It is our intention to provide users
with guidance to avoid inconsistencies and support in resolving them, as mentioned in
Section 1.1. So in addition to model checking we plan to use reasoning techniques for
vital automations such as analyzing properties of systems, understanding the effects
of design decisions, helping configure products, etc. Model checking and consistency
management respectively can be done in different ways, and those of importance for
our approach will be discussed next.

2.1.1 Consistency Management

One big part of supporting users in modeling scenarios is consistency management. In
order to get correct models according to some specifications, it is important to enforce
those specifications to get usable models.

9

2. PRELIMINARIES

First of all, to resolve inconsistencies they have to be detected. However, the knowl-
edge if the whole model or a single constraint is consistent, is not enough to produce
fixes. As Nentwich et al. for example stated in [4], it is important that trace links
from the inconsistency to the model element(s) in question exist. In their work they
propose to use first-order logic to express consistency rules and are able to provide
trace links between inconsistent elements. Performance also is an issue when checking
for consistency and approaches like the incremental consistency checking approach by
Egyed [5] addresses this issue.

After being detected, developers should not be hindered in continuing their work
despite the presence of inconsistencies [3]. To live with inconsistencies is a very impor-
tant concept, because it gives engineers the freedom to ignore errors for the time being,
this is especially valuable if there are several engineers working on conflicting parts of
the same model. However, at some point those inconsistencies have to be resolved,
preferably with the support of automated techniques.

For generating fixing or repair actions several approaches exist. On the one hand,
Xiong et al. propose writing additional “fixing procedures” for each constraint, in order
to produce fixes when needed [16]. On the other hand Nentwich et al. describe in their
work [17] a method for generating interactive repairs from first-order logic formulae –
the same formulae that they already used to detect inconsistencies [4]. Another ap-
proach described by Egyed et al. in their paper [18] shows how to generate choices
for fixing an inconsistency without having to understand such formulae, which can be
complex in case consistency rules are written in programming languages. These ap-
proaches look at other model elements already defined in the model and use them as
choices. This generated choices are then reduced by looking at the impact of each
choice [19, 20] and removing those that would cause additional inconsistencies. This
can be problematic because during refactoring it could be necessary to introduce tem-
porarily new inconsistencies [3], as a result dismissing fixing actions, because they cause
new inconsistencies, could be counterproductive.

Despite the considerable progress in research for fixing inconsistencies, to the best
of our knowledge no approach looks at more than one inconsistency at a time. However,
the need for a more “global” approach during consistency checking itself is demonstrated
by Sabetzadeh et al. in [21] but not used for fixing yet. Additionally Nentwich et al.
already stated in their work [17], that one of the biggest challenges is not to look at one
single inconsistency but to look at inconsistencies from a more “global” point of view.
In our opinion this notion is also an important one and key to improved automated
techniques for inconsistency resolution as described in our workshop paper [10].

While all of the approaches above have in common that they work towards con-
sistency management in UML models, they apply different reasoning techniques in-
cluding first-order logic, truth maintenance systems, constraint based reasoning, etc.
Even though all of those techniques are viable in decision-making related reasoning, our
research focused first on constraint satisfaction problems (CSP) [22] and transitioned
later on towards Boolean satisfiability problems (SAT problems) [8].

10

2.1 Reasoning

Clause Clause Clause
/ | \

CNF (low − level) :
︷ ︸︸ ︷

(a ∨ b) ∧
︷ ︸︸ ︷

(b ∨ ¬c) ∧
︷ ︸︸ ︷

(d ∨ e)
\ / \ / \ /

Literals Literals Literals

Assumptions (high − level) : ¬a, ¬b, ¬c

Figure 2.1: Overview of SAT terminology.

2.1.2 Boolean Satisfiability Problems

Boolean Satisfiability Problems, also known as SAT problems, are relatively old [8]
and simple problems. Next a short introduction to the terminology based on [23] is
given and summed up in a small example in Figure 2.1: SAT problems are defined
in conjunctive normal form (CNF) which is a conjunction of clauses. One clause is a
disjunction of literals which are Boolean variables. Assumptions are assignments for
literals that constrain the assignment possibility of a literal to either true or false. SAT
solvers produce one of two results, either a CNF is satisfiable (SAT) or unsatisfiable
(UNSAT) – SAT meaning that there exists an assignment for all literals such that
the CNF evaluates to true, UNSAT meaning that such an assignment does not exist.
If a problem is UNSAT it can be because of either an inconsistency in the clauses
which would be low-level, or an inconsistency because of assumptions which would be
high-level.

Even though SAT problems are relatively simple in their structure and SAT solvers
are only able to differentiate between either SAT or UNSAT, the reasoning possible with
them can be quite complex. By analyzing the CNF formula or changing assumptions
one can find out if literals always have to be either true or false to make the formula
satisfiable, e. g. given the CNF (a ∨ b)∧ (a ∨ ¬b) one can deduce that a always has too
be true to make this CNF satisfiable. This can be helpful when calculating the effect
of other assumptions, e. g. to answer questions like if one makes a certain assumptions
which other assumptions have to be made in order for the formula to be satisfiable.
There also exists a range of concepts to help with unsatisfiable formulae, like for example
the concepts of a minimal unsatisfiable set (MUS), a minimal correcting set (MCS) and
a maximum satisfiable set (MSS). Those concepts will be explained in Chapter 5 with
the help of the example given in Section 3.1.3. For now it is sufficient enough to know
that in the SAT domain concepts to help with inconsistencies exist.

11

2. PRELIMINARIES

2.2 Product lines

The concept of product lines was first proposed by Parnas in 1976 [24] as “program fam-
ilies” based on the work of Dijkstra [25]. The probably most cited definition reads: “A
software product line is a set of software-intensive systems sharing a common, managed
set of features that satisfy the specific needs of a particular market segment or mission
and that are developed from a common set of core assets in a prescribed way” [26]. In
essence product line models capture the variability in product families. There exist
different approaches of how to capture this variability, the most common ones being
a feature-oriented approach (cf. Section 2.2.1) which emerged around 1990 [27] and a
decision-oriented approach (cf. Section 2.2.2) which emerged in 1991 [28]. Even though
different modeling approaches are used, in the end their purpose is on the one hand
to capture the variability and on the other hand enable reasoning with the models (cf.
Section 2.2.3) and the derivation of products.

According to Linden et al. [29] software product line engineering (SPLE) distin-
guishes between two life-cycles: development for reuse and development with reuse.
On the one hand development for reuse, typically also called domain engineering, fo-
cuses on building up a product line infrastructure of reusable artifacts, also called assets
(these assets encompass all artifacts relevant throughout software development, e. g.,
requirements, architecture, code, documentation, test cases, etc. [30]). On the other
hand development with reuse, also called application engineering, means developing
individual products using this infrastructure. After the development of these products,
one needs to derive them from the product line.

This product derivation is the process of configuring a product, therefore also often
called the configuration process or more general the decision-making process. In most
cases configuring a product involves one or more end users also called decision makers,
that translate the requirements they have on the product into decisions how the vari-
ability should be handled. Typically this configuration process is not done completely
manually, but rather with the support of configurator tools. There exist a number of
different configurator tools for product lines [31, 32, 33, 34, 11, 35], that support differ-
ent kind of approaches and differ on the level of support the provide to users. However,
all configurators share the common goal of guiding the user(s) to a valid configura-
tion / product. Due to all this effort needed, SPLE only pays off if the infrastructure
can be reused efficiently and often, so that the development cost of building the infras-
tructure do not outweigh the costs of building the needed application with alternative
methods [36]. For a broader and more detailed overview of relevant work and other
aspects of SPLE, it is recommended to consult Rabiser’s PhD thesis [30] or one of the
several surveys on variability modeling [37, 38]. For a detailed comparison of feature
modeling vs. decision modeling we would like to refer to Czarnecki et al. [39].

2.2.1 Feature Models

According to Kang et al. [27] feature modeling is about identifying common and distinc-
tive aspects, the so-called features, between related systems in a domain. These features

12

2.2 Product lines

Figure 2.2: Example of a basic feature model (in the notation proposed by Czarnecki [40]).

are user-visible aspects or characteristics of the domain. The probably most cited def-
inition reads: “A feature is a system property that is relevant to some stakeholder and
is used to capture commonalities or discriminate among systems in a family” [40].

Feature models are hierarchical tree-based models that follow a common struc-
ture [27, 40, 41, 42, 43], as depicted in Figure 2.2, slightly different notations that exist,
will not be described here. In the tree, features are represented as nodes, while the
edges describe relations between the features. The root node of the tree represents
the domain concept being modeled and is included in every product derived from the
feature model. Feature models have mandatory features, decorated with filled circles,
that are common to all related products represented by the feature model. Further-
more they have optional features, decorated with hollow circles, that can either be
part of the target product or not. And there are grouped features, that represent
cardinality relations in the form of [n, m], where n is the minimum number of fea-
tures that have to be selected and m is the maximum number of features that are
allowed to be selected and 1 ≤ n ≤ m with m being smaller than or equal to the
number of features in the group. The selection rules of features contained in a feature
group apply as soon as the parent feature or one of the child features is selected to
be in the product. The most common feature groups, an exclusive-or-group and an
or-group, are depicted in Figure 2.2. An exclusive-or-group always has a cardinality
of [1, 1], so that only exactly one feature has to be selected from the feature group.
Such exclusive-or-groups are visualized as hollow arcs. On the other hand an or-group
always has a cardinality of [1, #numberOfFeatures], so that at least one has to be
selected and as many as are available. Such or-groups are visualized as filled arcs.
In addition to such implicit constraints (stemming from the tree structure) additional
explicit constraints can be expressed in Boolean logic as cross-tree constraints, e. g.
(XOR Feature 1 → OR Feature 3) ∧ (XOR Feature 2 → ¬OR Feature 2) meaning
that if XOR Feature 1 is selected OR Feature 3 has to be selected (requires) and if

13

2. PRELIMINARIES

Figure 2.3: Example of a basic decision model.

XOR Feature 2 is selected OR Feature 2 must not be selected (excludes).
Sometimes the tree structure and such additional constraints might not be enough

to model all the requirements, e. g. certain features might need additional information
for the initialization of artifacts. To solve this issue feature models can be extended
with attributes [43], meaning that to each selected feature different attributes can be
added which can be constrained too, e. g. an integer between 1 and 5 with a default
value of 1.

2.2.2 Decision Models

The basic idea behind decision modeling in product lines, e. g. [28, 44, 32], is to
separate concerns and focus on the user perspective for the decision model. As a
consequence, in contrast to feature models decision models are not used to represent
commonalities. However, decision models always have an asset model behind where of
course common assets are represented and trace links exist between the decision and
asset model. While hierarchy is essential for feature models, it is only secondary for
decision models. In other words decision models rely only on decisions that need to be
made to derive a specific product form the product line [30]. According to Rabiser [30]
decisions are typically represented in form of questions with a defined set of possible
answers. However, in contrast to features, questions are not limited to Boolean types.
This is depicted in Figure 2.3 with questions as ellipses, various choices per questions
connected via solid lines to the ellipses and a relation shown as a dashed line. The
sets of answer choices are similar to feature groups and the selection of answers can
also be tied to cardinality constraints. There can also exist relations between those
questions as shown in Figure 2.3. Such relations are similar to cross-tree constraints in
feature models, but allow a different level of granularity: relations can be expressed in
Boolean logic between the questions itself or between the answer choices of questions
or a mixture of both.

As mentioned before decision models only represent parts of a product line where
decisions need to be made. As a consequence the decision model is not enough for
representing a whole product line infrastructure. This issue can be addressed differently,
for example the DOPLER (Decision-Oriented Product Line Engineering for effective

14

2.2 Product lines

Reuse) variability modeling approach [30, 32, 45] uses three separate, yet connected,
models to represent a product line [30]:

(i) A domain model that is specific to the domain. Managing different kinds of
assets in a product line relies on the precise definition of their characteristics in
a domain-specific meta-model. Building such a meta-model requires knowledge
about a domain and / or organization settings and specifics. The meta-model
defines the types of assets to be included in the product line (e. g., component,
service, documentation, setting, etc.), their attributes (e. g., file name, location,
etc.), and the possible relationships between different asset types. The DOPLER
variability modeling approach allows defining asset relationships with an arbitrary
name and cardinality based on eight basic relationship types: inclusion, exclusion,
parent, child, abstraction, implementation, predecessor, and successor [46, 47].

(ii) Asset models that are created on the basis of the domain-specific meta-model and
describes the concrete reusable elements in a product line, their attributes, and the
dependencies among them. The meta-model denotes which assets can be created
and which attributes and dependencies can be modeled. Asset models can often
be created semi-automatically if product line development does not start from
scratch and core assets already exist. For example, call dependencies defined in
existing system configuration files can be utilized to automatically derive requires
dependencies among software components that reflect the underlying technical
restrictions.

(iii) Decisions represent the variations in a product line variability model. Decisions
have a name and a type (i. e., Boolean, String, Double, or Enumeration) and are
represented by questions. Arbitrary additional decision attributes can be defined.
A decision type denotes the range of allowed values to be set on the decision by
answering its question (the possible choices). Validity conditions allow restricting
the range of allowed values. Decisions can depend on each other hierarchically
(e. g., a decision needs to be taken before another one) and / or logically (e. g.,
taking a decision changes the value of another one). Variability stemming from
technical or business considerations is expressed using decisions. Decision models
link external variability (relevant for customers, sales people, or marketing staff)
with internal variability (relevant for engineers). A decision model is a graph
where the nodes represent decisions and the edges represent the relationships
between them. Decision models reduce modeling complexity as they represent
variability at a higher level of abstraction. For instance, variability mechanisms
in the asset base can be changed without an effect on the decisions. Assets and
decisions are connected using inclusion conditions that denote when a particular
asset will be part of a product

15

2. PRELIMINARIES

2.2.3 Reasoning with Product Lines

Besides using reasoning techniques to derive products, they can also be used to check
for inconsistencies within the product line model before the derivation process even
begins. Such analysis can range from simple things, e. g. detecting anomalies [43] like
for instance dead features and false optional features, to reasoning about non-functional
properties of the product lines [48]. Basically product line analysis is checking for
anything that could cause problems during product derivation.

Once the system is modeled, these effects can be calculated with SAT-Solvers
(see Section 2.1.2) and used for eliminating conflicting choices [49]. Translating con-
figuration problems / feature models / decision models to SAT problems is solved by
e. g. [50, 42] and will not be discussed here.

SAT-based reasoning is state-of-the-practice [34, 33]. It has several primary uses:
SAT reasoning is used i) to validate products [43], ii) to find viable alternative solutions
if a product is not valid [51] or auto complete partial products [34], and iii) to provide
guidance during the configuration process [49, 13]. To validate a product one call to
the SAT solver is sufficient. For the other uses several SAT solver calls are necessary
with different assumptions to find out if combinations of assumptions are valid. So
basically in these cases the SAT solver is used as an oracle and the reasoning process
is based on querying this oracle.

2.3 Guidance

Guidance is foremost about tool support to get the users to their goal [52, 53]. Thus
guidance “behind the curtains” consists of two major components: i) automation and
ii) additional information to help users make decisions. Although providing as much
guidance as possible may seem like a good idea, this is not always the case as suggested
by Nimwegen et al. [54]. They make the argument that too much guidance triggers the
behavior in users to completely trust the guidance and stop thinking for themselves even
in cases where the guidance fails. Vicente also makes a similar argument in [55] using
the example of automatically set VHS recorder clocks which very often fails miserably
in the most unusual ways. He presents a good example for how automations can fail,
although one would think eliminating the human is a good thing if you think about
improving safety or productivity, basically arguing that automations are not foolproof
and one should not rely solely on them.

But guidance is not just about the technology “behind the curtains”, the visualiza-
tion plays the most crucial part, but can only be as good as the information it gets.
this visual guidance should not be to overwhelming by providing too much information,
as Miller already pointed out in 1956 [56] seven plus or minus two is the magic number
of the humans capacity for processing pieces of information at a time. An overview of
different visualization techniques – like for example different types of trees, flow charts,
venn diagrams, etc. – and their applicability to product lines is given by Pleuss et
al. [57].

16

Chapter 3

Background

“ The whole is more than the sum

of the parts. ”
– Aristotle

In this chapter we will provide the background needed for our approach, including a
definition of terms and examples we will use and a detailed problem description. In the
next Section 3.1 we will define our notation for decision models and explain an example
used throughout this thesis. After that we will provide a definition of terms we use
for the process of decision-making in Section 3.2. And the chapter will be round off in
Section 3.3 were we will give a detailed problem description.

3.1 Decision Models

We work with decision models, since in our opinion they provide a more intuitive
interface during decision-making in comparison to feature models. Not being bound
to an hierarchical tree structure also simplifies the development of such models. As
mentioned in Section 2.2.2 decision models consist of questions, choices of how to answer
these questions, and relations between questions and / or choices, which will be broke
down in the next sections. Formally speaking, Questions denotes the set of all questions
and Relations denotes the set of all relations contained in a decision model. Thus we
can define a decision model as a tuple of questions and relations:

DecisionModel = (Questions, Relations)

3.1.1 Questions and Choices

Questions and their choices of how to answer them are an essential part of decision
models. Each Question ∈ Questions has a set of choices (depending on the question
those could range from different labels, to numbers, to Boolean values, etc.) which

17

3. BACKGROUND

we call Choices. Note that the same Choices set can be used for different questions.
Furthermore each question has a cardinality constraint determining how many choices
(at a minimum and at a maximum) can be selected as an answer to the question. Thus
we can define a question as a tuple of Choices and a cardinality constraint:

Question = (Choices, [n, m] |n, m ∈ N, n ≤ m ≤ |Choices|)

To simplify things, we also define the following syntactic equivalence:

Question = Choices ≡ Question = (Choices, [1, 1])

Examples for question definitions are: NumberOfBackups = {x |x ∈ N, x < 5},
Color = {red, blue, green}, Extras = ({A, B, C} , [1, 2]), Name = {s | s is a String}.

Selecting an answer for question is about selecting as many choices from it, as
specified by the cardinality constraint. Thus the following conditions apply to the
Answer set: Answer ⊆ Choices and n ≤ |Answer| ≤ m. Assigning this Answer set
to the Question is what we call a Decision:

Decision = Question← Answer

To allow for better readability in text, we also define the following syntactic equiv-
alences:

Question← Answer ≡ QuestionAnswer

We also define two special Answer sets we call undecided and irrelevant, to have
a convenient way of writing about unnecessary decisions and decisions not yet made.
Additionally we allow Answer sets containing only one element to be written without
the curly brackets. Examples for decision are: Colorundecided, Extras{A, B}, Colorred,
NumberOfBackups3, Extrasirrelevant.

3.1.2 Relations

As already mentioned relations are between questions and / or choices. We use three
different types of relations: i) relevancy relations, ii) constraint relations, and iii) CNF
relations. In our experience these threes types of relations are sufficient enough to
express any dependency or constraint in decision-making, and constraints that cannot
be expressed with the help with of CNF relations can also not be handled by our
reasoning engine which is based on a SAT solver.

Relevancy relations are used to express relations of relevance between questions.
The intention is to model such dependencies in a convenient way by, for example,
specifying that it makes no sense to ask questions about the configuration of software
components if they are not even used, hence irrelevant. A relevancy relation maps from
one source question Source to a set of target questions T argets and is itself a set of
implications from choices of the source question ChoicesSource to either relevant or
irrelevant, formally we define a relevancy relation the following way:

18

3.1 Decision Models

(Source→ T argets) RelevancyRelation = {
(choice⇒ state) | choice ∈ ChoicesSource, state ∈ {relevant, irrelevant}

}

In order for it to be a well-formed relevancy relation at least one choice should map
to relevant and at least one other choice to irrelevant. An example for the definition
of a relevancy relation is:

UseSubversion = {yes, no} , . . .

(UseSubversion→ {Address, User, Password}) RelevancyRelation = {
(yes⇒ relevant) ,
(no⇒ irrelevant)
}

Constraint relations are used to express constraints of one choice onto choices of
other questions, like for example requires and exclude dependencies. A constraint re-
lation maps from one source question Source to one target question T arget and is
itself a set of implications from choices of the source question ChoicesSource to sets of
choices of the target question ChoicesT arget. Formally we define a constraint relation
the following way:

(Source→ T arget) ConstraintRelation = {
(choice⇒ C) | choice ∈ ChoicesSource, C ⊆ ChoicesT arget

}

An example for the definition of a constraint relation is:

Device = {Phone, Desktop, Laptop}
Application = {Accounting, Inventory, CRM, Sales}

(Device→ Application) ConstraintRelation = {
(Phone⇒ {Inventory}) ,
(Desktop⇒ ChoicesApplication \ {Sales}) ,
(Laptop⇒ {CRM, Sales})

}

CNF relations are used to express more complex relations that are not covered with
the simpler constraint relations, but in essence are also constraint relations. Instead
of having a source and target questions like the other relations, CNF relations are
formulated in CNF with decisions used as variables:

CNFRelation =
∧ (∨

(x |x ∈ {Decision, ¬Decision})
)

19

3. BACKGROUND

Figure 3.1: Illustrative decision model for buying a laptop.

An example for the definition of a CNF relation is:

Color = {red, blue, green}
Extras = ({A, B, C} , [1, 2])

CNFRelation =
(

Colorred ∨ ¬Extras{A, B}

)

∧
(

Colorblue ∨ Extras{A, C} ∨Colorred

)

3.1.3 Illustrative Example

As an illustrative configuration example, shown in Figure 3.1, we will be using an
excerpt from a real e-commerce decision-oriented product line. This decision model
was reverse engineered from the the DELL website (during February 2009), a complete
version of the model was also used in the evaluation and it can be downloaded from the
C2O website1. This excerpt was chosen because while still being relatively small and
compact, it allows to highlight and explain the different facets of the problems we want
to tackle with this thesis. The illustration includes seven questions which are defined
next:

1www.sea.jku.at/tools/c2o

20

http://www.sea.jku.at/tools/c2o

3.1 Decision Models

Laptop = {yes, no}

Screen Size =
{
12.1′′, 13.3′′, 15.4′′}

Memory = {2GB, 8GB}

Screen Resolution = {XGA, W XGA, W UXGA}

W ebcam = {yes, no}

Operating System = {32bit, 64bit}

Laptop T ype = {Inspirion, Latitude, V ostro}

Thus the question set of the decision model tuple is: Questions = {Laptop, Memory,
Screen Size, Screen Resolution, W ebcam, Operating System, Laptop T ype}. But a
decision model is not complete without its relations of which five are indicated in Fig-
ure 3.1 and defined next:

RR = (Laptop→ {Screen Size, Memory, Screen Resolution,
W ebcam, Operating System, Laptop T ype})RelevancyRelation = {

(yes⇒ relevant) ,
(no⇒ irrelevant)

}

CR1 = (Screen Size→ Laptop T ype)ConstraintRelation = {
(12.1′′ ⇒ {Inspirion, Latitude}),
(13.3′′ ⇒ {Latitude, V ostro}),
(15.4′′ ⇒ {Inspirion, Latitude, V ostro})

}

CR2 = (Memory → Operating System)ConstraintRelation = {
(2GB ⇒ {32bit, 64bit}),
(8GB ⇒ {64bit})

}

CR3 = (Screen Resolution→ Laptop T ype)ConstraintRelation = {
(XGA⇒ {Latitude, V ostro}),
(W XGA⇒ {Inspirion, Latitude, V ostro}),
(W UXGA⇒ {Latitude, V ostro})

}

CR4 = (W ebcam→ Laptop T ype)ConstraintRelation = {
(yes⇒ {Inspirion, V ostro}),
(no⇒ {Latitude, V ostro})

}

21

3. BACKGROUND

Figure 3.2: Graphical illustration of the decision-making process with our example.

Thus the relation set of the decision model tuple is: Relations = {RR, CR1, CR2,
CR3, CR4}, making the decision model: Example = (Questions, Relations).

3.2 Decision-Making

The process of decision-making involves one or more decision makers and a decision
model. The decision model’s questions are always unanswered at the beginning, giv-
ing us for our example from Section 3.1.3 the initial state: State = {Laptopundecided,
Screen Sizeundecided, Memoryundecided, Screen Resolutionundecided, W ebcamundecided,
Operating Systemundecided, Laptop T ypeundecided}, which is also our problem space. The
goal of decision-making is to get a decision (other than undecided) for each question
in the decision model, resulting in a configuration of a system, our solution space.
We define a configuration to be a complete set of decisions other than undecided for
all questions. For example, the configuration C1 = {Laptopno, Screen Sizeirrelevant,
Memoryirrelevant, W ebcamirrelevant, Operating Systemirrelevant, Laptop T ypeirrelevant,
Screen Resolutionirrelevant} is a valid configuration for deciding upon a Laptop in our
illustration. In fact for our example there exist 70 valid configurations, but there exists
an infinite number of configurations that are invalid (given that one can assign choices
that are not valid for the question). For example, the configuration IC1 = {Laptopyes,
Screen Size12.1′′ , Screen ResolutionXGA, Laptop T ypeLatitude, Operating System32bit,
Memory8GB, W ebcamno} is invalid because it violates relation CR2 that specifies that
Memory8GB is only valid in combination with Operating System64bit.

To reach this goal of a complete valid configuration, the process of decision-making
is about guiding the decision maker through the questions and let the her make one
decision at a time. After each decision the problem space becomes smaller and the
solution space more complete. This process is visualized in Figure 3.2, first the decision
maker selects a question in our case the Laptop question (i). Given the choices to
either buy or not to buy a laptop, she decides on Laptopyes (ii). After that as a

22

3.3 Inconsistencies during Decision-Making

Figure 3.3: Graphical abstraction of the decision-making process over time.

Table 3.1: Illustration of the decision-making process with our example in tabular form.

Decision
1stq 2ndq 3rdq

u s u s u s

Laptopyes 1 1 1 1

Laptopno 0 0 0
Memory2GB 0 0
Memory8GB 1 1 1

Operating System32bit 0 0
Operating System64bit 1 1 1

q. . .question, u. . .user decisions, s. . .derived state, 0. . .false, 1. . .true

next question Memory is selected (iii). After making the decision Memory8GB (iv),
the question Operating System is chosen (v). At this point one can observe for the
first time the typical guidance a configurator tool offers, namely that the 32bit choice
is disabled because of the relation CR2, that states that in order to have 8GB of
memory one must use a 64bit operating system. This process then continues in a similar
fashion as indicated (vi). An abstraction of this process is visualized in Figure 3.3, with
the big circles representing questions, small circles representing decisions, the small
dots representing still viable choices and the small x-es representing invalid choices at
this point in the configuration. This schematic diagram depicting the time-line of a
decision-making process will be used next to describe different problems that come with
inconsistencies.

The decision-making process could also be visualized in tabular form as shown in
Table 3.1. For the first question the user decided Laptopyes which is indicated in the
column 1stq, u, the effect and resulting state of this decision is shown in the column
1stq, s. This is repeated for the other questions, where user decisions are bold and
decisions belonging to questions that already have been answered are grayed out.

3.3 Inconsistencies during Decision-Making

In an ideal world there would not be any inconsistencies, however inconsistencies can
rise easily during decision-making. The first and foremost problem would be if the deci-
sion model itself already contained inconsistencies, as mentioned in Section 2.2.3 there

23

3. BACKGROUND

Figure 3.4: Inconsistencies during decision-making.

exist techniques how to detect such inconsistencies. For the moment we assume that
the decision model by itself is consistent. Since the model is correct any inconsistencies
raised during decision-making must stem from the conflicting decisions by the decision
maker. As such the decision maker is also the first to realize there is an inconsistency
when a desired choice for a question is no longer available, as depicted in Figure 3.4 the
desired choice is already disabled and the inconsistency detected (as indicated by the
capital I). We call the point in time when an inconsistency is detected failure. So what
possibilities are there to react to such a failure or even prevent it? However, before we
go into detail, we must distinguish two basic cases:

(i) No valid configuration exists: this happens when the decision maker configures a
product that in this manner does not exist. Eventually, after encountering many
inconsistencies and not finding a suitable alternative this case can be identified.
The only solution is to adapt the decision model, changes of assets included if
necessary, to satisfy a customer’s need.

(ii) A valid configuration exists, but some of the questions need to be answered dif-
ferently. Eventually after changing some answers a configuration is found, that
maybe does not fulfill all requirements 100%, but at least is good enough so that
the decision maker can live with it.

In the next sections we will focus on discussing the second case and always as-
sume the decision model to be correct and immutable. For the purpose of illustra-
tion we present one interesting inconsistent decision-making process in Table 3.2. In
this illustration technically after the fourth decision the configuration process could
be stopped, since a decision was provided {Laptopyes, Screen Size12.1′′ , Memory8GB,
Screen ResolutionXGA} or derived {W ebcamno, Operating System64bit, Laptop
T ypeLatitude} for all questions. However what if the user is not satisfied with some
of the derived decisions as illustrated and wants W ebcamyes? Strategies on how to
prevent and manage such inconsistencies are discussed next.

3.3.1 Strategies for Preventing Inconsistencies

For preventing inconsistencies we have identified three basic strategies:

(i) The easiest solution from the decision maker’s point of view to facilitate him
with a less complex decision model with respect to relations. With less complex

24

3.3 Inconsistencies during Decision-Making

Table 3.2: Configuration progression of the example given in Figure 3.1.

Decision
1stq 2ndq 3rdq 4thq 5thq

u s u s u s u s u

Laptopyes 1 1 1 1 1

Laptopno 0 0 0 0
Screen Size12.1′′ 1 1 1 1

Screen Size13.3′′ 0 0 0
Screen Size15.4′′ 0 0 0

Memory2GB 0 0
Memory8GB 1 1 1

Screen ResolutionXGA 1 1

Screen ResolutionW XGA 0
Screen ResolutionW UXGA 0

W ebcamyes 0 1?

W ebcamno 1
Operating System32bit 0 0
Operating System64bit 1 1
Laptop T ypeInspirion 0
Laptop T ypeLatitude 1
Laptop T ypeV ostro 0 0 0

q. . .question, u. . .user decisions, s. . .derived state, 0. . .false, 1. . .true

relations the possibility to cause inconsistencies decreases drastically. However,
providing products with features combined in any possible combination is not
always easy and to just rely on this mechanism for preventing inconsistencies is
not a good idea.

(ii) The second strategy is to provide the decision maker with as many pieces of infor-
mation as possible, so that the decision can be informed and the decision maker is
hopefully aware of the consequences for further decisions. This approach is largely
what the research in decision support systems is all about [58]. This strategy has
one main disadvantage, namely that in large decision models with complex re-
lations that include combination effects it may not be enough to provide this
information to the decision maker for her to understand the complications that
could rise with future decisions.

(iii) The third strategy is simple but in our opinion a rather effective one. Usually
configurator tools impose a certain sequence onto decision makers, the idea behind
it is to guide users through the configuration, for instance the most logical or
shortest way and so on. However, every decision maker has different priorities,
when configuring a product, that cannot be foreseen. In such cases allowing the
decision maker to deviate from the imposed sequence might be the smartest way

25

3. BACKGROUND

Figure 3.5: How to manage inconsistencies during decision-making.

to prevent inconsistencies because decisions that are subjectively important can
be made first, before the choices get constrained through other decisions.

3.3.2 Strategies for Managing Inconsistencies

Dealing with inconsistencies is something that can rarely be avoided during the config-
uration of complex decision models. Figure 3.5 illustrates the three basic strategies of
how to mange inconsistencies and also hints at the problem when faced with inconsis-
tencies and wanting to tolerate them. Any kind of automations, in our case SAT-based
automations need to continue working otherwise tolerating inconsistencies is a nuisance
and not really that helpful. In this section, we keep the resolving strategies simple and
focused on product configuration, but we believe that the basic strategies discussed
here also apply to more general user-guided scenarios. The three basic strategies are:

(i) The first strategy is disallowing inconsistencies, which is also the easiest way to
handle them. For this strategy to work automations that reason about the effects
of decisions have to be in place. So when the decision maker encounters a desired
choice that is already disabled, like for example yes for the question W ebcam
in Table 3.2, she basically has no other option than to select another choice or
start over again and select different choices for earlier questions or start with the
W ebcam question if the configurator tool allows it.

(ii) The second strategy is to fix inconsistencies right away. At the exact moment the
decision-maker introduces an inconsistency into the system by selecting a choice
that has been eliminated through some relation; a fixing strategy can be applied
to return the configuration to a consistent state immediately. Fixing an inconsis-
tency right away ensures that the model stays consistent and never contains an
inconsistency (no reasoning in the presence of inconsistencies is necessary). It is
fairly simple to realize and handle with reasoning engines, since the knowledge
base stays consistent. Different strategies to fix an inconsistency right away will
be explained in detail in Section 3.3.2.1.

26

3.3 Inconsistencies during Decision-Making

Figure 3.6: Inconsistency fixing strategies.

(iii) The third strategy is to tolerate inconsistencies and fix them later. Tolerating can
be easily realized if we stop reasoning until the inconsistencies are fixed. However,
as mentioned before, without existing automations working, it is not really that
helpful to just stop reasoning. Different strategies to tolerate an inconsistency
will be explained in detail in Section 3.3.2.2.

3.3.2.1 Fix Right Away Strategies

To fix an inconsistency right away we can use different strategies like the ones illustrated
in Figure 3.6, in the figure decisions involved in the inconsistency besides the one that
allowed the system to detect the inconsistency are represented by the shaded circles.
However, those decisions contributing to an inconsistency are usually not known. In
the case of our illustrative example from Table 3.2 user decisions involved in the in-
consistency would be {Screen Size12.1′′ , Screen ResolutionXGA, W ebcamyes} and they
are all connected via the Laptop T ype question and only one of those decisions needs
to be removed in order to be consistent again. If not all involved decisions are known,
fixing becomes a more or less random act. Next, the strategies depicted in Figure 3.6
are described in detail:

(i) Single Undo: The simplest way to fix an inconsistency and return to normal
working mode is to retract the decision that caused the inconsistency as illustrated
in Figure 3.6. The decision maker is told to try something else instead. Often
this is not desired by the decision maker since she wants the offending choice.
In a more general modeling scenario it could also be the case that a different
developer is continuing the work on a model she is not completely familiar with;
in such a case Undo might not be such a bad idea. In approaches that do not
care about the sequence this could also be the solution identified as the minimal
solution, since it typically is less effort than changing other decisions involved

27

3. BACKGROUND

in the inconsistency. Applied to our example from Table 3.2 this would mean
retracting the decision W ebcamyes which certainly would resolve the inconsistency
but may not be desired.

(ii) Multiple, Sequential Undo: Assuming the decision that caused the inconsistency
is important to the decision maker and therefore assumed to be correct, the
problem must be an earlier decision. To find the root of the problem the simplest
way is to retract the given decisions until the desired choice for the most recent
decision becomes available. This could also imply retracting decisions that did
not contribute to the inconsistency as illustrated in Figure 3.6 (unshaded circles),
which is not desirable. In addition to this it could be the case that it is sufficient
enough to retract only one of the inconsistent decisions. Multiple, sequential undo
would retract the most recent one first which could fix the inconsistency but may
not be the desired one. This is also the case in our example, since retracting
either Screen Size12.1′′ or Screen ResolutionXGA would be sufficient to resolve
the inconsistency. Which one gets retracted would depend on the sequence the
decisions were made in.

(iii) Selective (Multiple) Undo: To avoid retracting valid decisions that do not con-
tribute to the inconsistency, the involved decisions need to be identified (at least
partially). It does not matter if the identification of contributors is done manually
or automatically, but when it is done they can be retracted directly as illustrated
in Figure 3.6. This approach helps reducing the needed user input compared to
the multiple, sequential undo approach (valid decisions do not have to be made
more than once). Nevertheless, in situations where the desired choice is excluded
because of the combination of other decisions, it is not that simple. Retracting
one decision or the other could be sufficient, however, without further informa-
tion this cannot be decided automatically. Either all participating decisions or
randomly selected among them are retracted, or the decision maker has to be
asked which one she wants to retract – a question the decision maker may not be
able to answer correctly at this point during the configuration! Again this situa-
tion can also be found in our example, since retracting either Screen Size12.1′′ or
Screen ResolutionXGA would be sufficient to resolve the inconsistency, but this
cannot be automatically decided. Selecting one of those decisions randomly or
both of them is not a desirable solution.

(iv) A special form of a selective (multiple) undo might be to automatically calculate
a fix that is “close” to the intent of the decision maker. The work by White et
al. [51] or Felfernig et al. [59] solved this problem with respects to a minimal
solution, so we do not go into more detail here.

3.3.2.2 Tolerating Strategies

The “fix right away” strategies are thus valid but often not desirable. Instead of fix-
ing an inconsistency right away, it is more beneficial to let the decision maker answer

28

3.3 Inconsistencies during Decision-Making

more / all questions. The more information is collected, the better any reasoning works.
This additional information may, for example, help with deciding between two alter-
native options for resolving an inconsistency. It should thus be the decision maker’s
decision when she wants to resolve an inconsistency. Different strategies to continue
the configuration process with an inconsistency are described next:

(i) Stop Reasoning: Since reasoning with inconsistencies is hard, the simplest way to
continue the configuration process is to let the decision maker continue answering
questions without such reasoning. However, without reasoning, the user no longer
benefits from automations, e. g. knowledge of how choices are affected by deci-
sions. The negative effect would be that the decision maker is not guided through
the remaining questions and as a consequence has to memorize the constraints
limiting the product configuration options. This is realistically not possible and
unless the decision maker is an expert, this resolution strategy leads to follow-on
inconsistencies where the decision maker unintentionally makes additional errors.
For any reasonably complex system, asking the decision maker to configure a
system without automated guidance is a recipe for failure.

(ii) Continue Reasoning: A better choice would be to continue reasoning, while tol-
erating inconsistencies. This is only possible if the used reasoning technique
supports living with inconsistencies, or if the inconsistency is (partially) isolated
from reasoning so that the reasoning continues to work with some decisions that
are consistent. How the selection for the isolation can be achieved will be ex-
plained in Chapter 5. With this approach the decision maker is still guided
through the remaining questions and informed about decisions that would cause
new inconsistencies.

(iii) Continue Reasoning with Trust: Continue reasoning with trust means, that as-
sumptions are made on how much certain decisions provided by the decision maker
can be trusted. For example, the decision that introduced the inconsistency is a
decision that could be trusted to be important to the decision maker – and per-
haps even to be final. After all, if a choice is no longer available and the decision
maker insists on selecting that choice then the user states that this choice is a
“must have”. Obviously, all decisions made earlier that are participating in the
inconsistency could thus be considered less trustworthy. Based on this implicit
trust (implied through the sequence in which questions were answered), the rea-
soning would be more complete when continued. In the best case new trusted
decisions could even help to resolve the inconsistency by reducing the number of
alternative choices for fixing the inconsistency. In addition to the implicit trust,
trust could also be based on user queries: As mentioned in the Single Undo fixing
strategy, in more general scenarios different users can be involved in making de-
cisions. In such cases it could be interesting to ask the user different questions to
get a better feeling of what decisions to trust. These questions could range from
high-level questions like: How familiar are you with the given model on a scale

29

3. BACKGROUND

from 1 to 5? to low-level questions like: Select the decisions that are important
to you (and thus can be trusted) from the list of inconsistent decisions.

30

Chapter 4

Vision and Goals

“ Any intelligent fool can make

things bigger and more com-

plex. . . It takes a touch of genius –

and a lot of courage to move in the

opposite direction. ”
– Albert Einstein

In this chapter we will clarify our vision and goals for decision-making. For the most
part the vision as well as the goals are applicable in more general modeling scenarios.
Indeed, looking at the bigger picture, our vision is to provide such guidance not only
to decision-making, but also to design modeling and in the future also in traceability
management. First we will make the argument why we think automation is gener-
ally speaking a good thing in Section 4.1, followed by Sections 4.2 and 4.3 which will
contemplate the fine line between too little and too much automation.

4.1 Automation is good!

Generally speaking automation is a good thing, the more can be automated the less
work is left to do. In the case of decision-making, automations can be very useful to
guide the decision makers and relieve them of making all decisions manually and help
them to identify inconsistencies in the decisions and even resolve them.

User guidance during decision-making is perceived to be a straightforward activity
where a decision maker answers a set of predefined questions, usually by selecting among
their choices. Usually during the decision-making process the information about the
relations between questions is not available to the decision-maker. For example, the Dell
laptop configurator, from which we used an excerpt as our illustrative decision model
in Figure 3.1, hides those relations completely from the user. Without detailed expert
knowledge, users are confronted with the exponentially complex task of navigating
among interdependent choices and their implications without explanations. It is state-
of-the-art to support users by asking questions in a predefined sequence and presenting

31

4. VISION AND GOALS

only those choices of the remaining questions that are still available [45]. For example,
after selecting Operating System32bit for the laptop, Memory8GB becomes unavailable.
Initially all choices are available, these are then incrementally reduced as the user
answers questions (decides on a choice). Having this kind of automation is very useful
for a non-expert decision maker. This way the decision maker becomes aware of the
relations incrementally and does not need to understand the decision model behind it,
as long as she does not wish to select choices that are unavailable, then a different kind
of automation is needed to explain the inconsistency and to help fixing it. In addition
to the state-of-the-art it is our vision to also provide users with automated support in
case of managing inconsistencies once they are detected.

As mentioned before, it is state-of-the-art to order the questions to support users,
however this is still done mostly manually. The goal of such a sequence can be, for
example, to provide a certain flow of questions that belong together semantically or
to minimize user input. Rearranging the sequence of questions reduces effort because
questions have relations and answering questions makes other questions irrelevant or
reduces their choices (e. g., choosing Operating System32bit makes asking about the
Memory irrelevant in our example because Memory2GB can be derived automatically).
For our simple illustration, a user may understand these relations and may be capable
of answering the questions in a close to optimal manner without automation. With such
a small decision model, it would not even matter if the user answered the questions sub-
optimally since it takes very little time to answer them. However, the configuration
problem suffers from exponentially increasing configurations and factorial increasing
ways of arranging their sequence – a daunting scalability problem. In such a context, a
user is no longer capable of optimizing the sequence of questions manually [60]. If the
answering of questions takes time (e. g., steel plant manufacturing) then any reduction
in the number of questions asked or choices provided will save significant effort. Thus
as part of our vision, we plan to also unburden the creators of decision models to have
to think about the sequence of questions by automating this process.

4.2 Tools adapting to users, not the other way around!

It was made clear in the last section that automations are generally speaking a good
thing, but one has also to be careful. In our opinion sometimes automations go to far or
restrict users in such a way that it can be counter-productive. For instance, just think
of the auto-correct functions built-in in Microsoft Office, those automations that try to
help the user by automatically correcting misspelled words, or automatically capitalize
words at the beginning of enumerations. While those automations certainly have their
purpose and help many times, at other times they can be quite annoying and changing
things that are actually correct. In those cases one either realizes the automatic change
right away and takes it back, or realizes it later and wonders what happened or even
if it was an own mistake. In such cases the user has to do some extra work and might
even adapt his working style to fit the tool’s automations.

The message here being, that sometimes automations do not work as intended [55],

32

4.3 Imposing solutions only on request by users!

or do not fit every user. So it is our vision to allow decision makers to ignore our
automated guidance without any added effort, because in the end only she knows what
she wants. In case of automatically determining the sequence of questions, giving
the decision maker such freedom may seem contradictory for example to the goal of
minimizing user input. After all, any deviation from our proposed sequence (likely)
leads further away from the optimal path. Yet, we must recognize that an arbitrary
sequence of questions, even an optimal one, may not be intuitive or appropriate [54]
for every user. We should thus not impose but only suggest a particular sequence of
questions. Allowing the decision maker to deviate from the suggested sequence, while
still trying to suggest the optimal sequence for the remaining questions implies that the
user interaction must be optimized incrementally and in real-time, as it is not possible
to analyze all possible user interactions in advance (there are too many).

Allowing the decision maker this freedom can already have an impact on preventing
inconsistencies. Using the example given in Section 3.1.3, a tool that forces the decision
maker to answer the question about the laptop type first, could facilitate inconsistencies
later. To elaborate this, for example, if the decision maker has no idea what features a
certain laptop type allows to be selected and she actually does not care about the type,
she basically has to make a random decision in order to get to the questions she cares
about, thus potentially leading to inconsistencies if desired features (e. g. W ebcamyes)
are then not available for the selected laptop type.

4.3 Imposing solutions only on request by users!

In addition to giving the user the freedom to circumvent automations it is also our
vision to not impose certain decisions, particularly impose fixes for inconsistencies. It
is our strong belief that as long as there is more than one solution the decision maker
should be made aware of this fact and the decision of how to fix the inconsistency should
lie with her. The best case scenario being that all the direct and indirect contributors
of the inconsistency are known, so that she can make an informed decision on how
to fix the inconsistency. Some automations tend to search for a single solution to an
inconsistency, sometimes even with a certain goal, and then impose this solution onto
the decision maker. While this may be helpful in certain situations where the decision
maker does not care about how the inconsistency was fixed, it should only be the
solution if she wishes so.

Furthermore, we also want to allow decision makers to live with inconsistencies and
delay the fixing to a later point in time, if there are too many solutions to make a
decision right away. This vision also plays into the user not needing to adapt to the
tool’s needs but rather it to her needs.

4.4 Goals

Given those visions we can formulate the following three research questions that in
essence cover them completely:

33

4. VISION AND GOALS

Table 4.1: Precise goals based on our research questions.

Category Label Relates to Question

Optimality O1 RQ1, RQ3 Is it possible to calculate the optimal
sequence for any given configuration,
without knowing it in advance?

O2 RQ2 How well can an inconsistency be
pinpointed?

Correctness C1 RQ2 Is it possible to always identify the
defective decision at the point the
inconsistency is detected?

C2 RQ2, RQ3 Is correct reasoning possible in the
presence of inconsistencies?

C3 RQ2, RQ3 What about multiple inconsistencies?
Scalability S1 RQ3 Is the calculation of the optimal sequence

fast enough to be used in real-time?
S2 RQ2 How well do the computations for living

with inconsistencies scale?

Other Goals G1 RQ2 Is there an approach that can do that
without isolating all decisions?

G2 RQ2, RQ3 Are there still benefits from reasoning with
the remaining decisions?

RQ1: How can we prevent users from getting to dead ends during the configuration
process?

RQ2: How can we support users in dealing with dead ends if they cannot be avoided
without imposing a certain solution?

RQ3: With keeping RQ1 and RQ2 in mind, how can users still be guided through the
configuration process, with respect to minimizing the needed user input?

To answer those questions we have defined several goals and categorized them in Ta-
ble 4.1. Answering those questions will be part the approach in Chapter 5 and the
evaluation in Chapter 7.

34

Chapter 5

Approach

“ Intelligence is the ability to

avoid doing work, yet getting the

work done. ”
– Linus Torvalds

In this chapter we present our approach for fulfilling our vision and goals of dealing with
inconsistencies in decision-making. In the next Section 5.1 we will outline our reasoning
architecture. After that two sections covering the independently solvable problems of
how to optimize the sequence of questions to avoid inconsistencies (Section 5.2) and
how to live with inconsistencies (Section 5.3) are given.

5.1 Reasoning Architecture Overview

The reasoning architecture is based on SAT-based reasoning and split into several layers
as depicted in Figure 5.1. For each layer there exists an interface to provide flexibility
in the implementation. The model reasoning layer is initialized with a decision model
and a SAT reasoner and uses a model encoder to transform the decision model into
CNF. A more detailed description of the inner workings and components is given next.

Starting out with a Decision Model, as described in Section 3.1 the first step is
to encode the questions with their respective choices and the relations between the
choices. This crucial step is performed by the Model Encoder. During encoding each
decision is assigned a numerical literal, since SAT solver implementations work with
numerical literals, e. g., for our illustrative example Laptopyes → 1, Laptopno → 2,
Screen Sizeirrelevant → 3, Screen Size12.1′′ → 4, etc. Note that questions that can
become irrelevant because of relevancy relations are automatically recognized and ex-
tended with the irrelevant decision if not already present. After that the cardinality
constraint of each question is encoded as clauses. For example, exactly one choice
must be selected for the laptop question, to ensure this constraint we need two clauses
(Laptopyes ∨ Laptopno) and (¬Laptopyes ∨ ¬Laptopno) – the first clause ensures that

35

5. APPROACH

Figure 5.1: Reasoning architecture overview.

at least one choice is selected, in combination with the second clause it is also ensured
that at most one choice is selected. Of course for the same constraint more clauses are
needed if a question contains more choices. These clauses are later provided to the SAT
solver implementation as a stream of integers 1 2 0 and −1 − 2 0, the zero signifying
the termination of one clause and the negative literals representing the negation. After
the encoding of the questions and their choices finally the relations between the ques-
tions are encoded. Basically what happens is that relevancy relations are transformed
into implications between the decisions that make something relevant or not onto the
irrelevant decisions of the target questions, constraint relations are already implications
between decisions. Those implications are then transformed into CNF in the manner
that any implication can be transformed due to the equivalence a ⇒ b ≡ ¬a ∨ b. The
CNF relations are already in CNF and therefore no transformation is needed.

The Model Reasoner is the interface between input from a configurator tool and
the SAT Reasoning, it gets the information about decisions made and keeps an internal
configuration state. With the help of the Model Encoder these decisions are mapped to
assumptions which are forwarded to the SAT Reasoning layer for reasoning. Generally
speaking it is an extension to the SAT Reasoning layer so it can deal with decision
models instead of plain CNF problems.

The SAT Reasoning layer contains two vital components, a SAT Reasoner and a
SAT Solver. The SAT Solver is the “heart and soul” of our reasoning. We use the
PicoSAT [61] solver by Armin Biere. However, other solvers can be used too, for
instance as discussed later our prototype tool also works with the Sat4j solver [62].
The SAT solver gets as input all the clauses that describe the decision model. During
reasoning it will learn new clauses for a faster evaluation, however concerning the
configuration it is stateless. This stems from the fact that we use an assumption based
configuration, meaning that while the decision model is encoded in CNF decisions made
by the user are represented as assumptions. This approach has two key advantages over

36

5.1 Reasoning Architecture Overview

representing decisions as clauses: i) Assumptions can easily be undone due to the nature
of most SAT solver implementations. Assumptions need to be assigned before each SAT
call and are only considered for one SAT call without triggering the learning of new
clauses. In contrast to adding clauses for decisions which would trigger the learning of
new clauses. Since removing clauses is expensive because the solver would have to know
which clauses were derived from the one that should be removed and this information
is not readily available, the most used solution is to reset the solver and initialize it
with the original CNF. ii) The second advantage of using assumptions over clauses is
the simple fact that this way the model is easily distinguishable from decisions made
by the decision maker, which is very helpful when dealing with inconsistencies.

Due to the fact that the SAT solver is stateless and produces only SAT or UNSAT as
a result, it is only used as an oracle for reasoning purposes by the SAT Reasoner. The
SAT reasoner provides the missing functionality to perform more complex reasoning
tasks and also keeps track of the configuration state and possible inconsistencies. The
main reasoning task it performs is to calculate the effects a new decision, given the
model and the configuration state, has. Given such a new decision it is encoded and the
assumption is added to the configuration state, as a next step the SAT solver is called
with the new state. Should the SAT solver return UNSAT we have encountered an
inconsistency and need to isolate decisions from reasoning otherwise we cannot use the
SAT solver any longer for reasoning because any subsequent call with the same or more
assumptions will result in UNSAT. What possibilities one has for such an isolation will
be discussed in detail in Section 5.3. For now, let us assume the SAT solver returned
SAT, then we can request a complete assignment for all the literals that satisfy the
CNF. Based on this assignment we can remove our state, which must be part of the
assignment. For each of the remaining literals in the assignment one further call to the
SAT solver is made with the assumptions contained in the state and a new additional
assumption that is the inverted literal. Depending on the result of this SAT call we can
deduce if the new decision had an effect on this literal. Given our example starting with
an empty state {}, the decision maker could decide Laptopyes which would give us the
satisfiable state {1} and one possible assignment {1,−2,−3, 4, . . .}. Removing thus the
state from the assignment we would be left with {−2,−3, 4, . . .}. Next we would call
the SAT solver with the assumptions {1, 2} in order to see if Laptopyes and Laptopno

are satisfiable (the information that these assumptions are the laptop decisions is not
known in the SAT reasoner and not needed). As we know from the example this is
not possible and the solver would return UNSAT, so we can deduce that the effect of
Laptopyes is at least ¬Laptopno. As mentioned before, other SAT calls would be made
with different assumptions: e. g. {1, 3} , {1,−4} and so on determining for each literal,
we do not have an assumption yet, if it is still a free variable or already a constrained
one. Already constrained ones would be included in the state.

37

5. APPROACH

5.2 Guidance Calculation

As part of our vision we proposed to unburden the engineers of thinking about the
sequence of questions and suggested to determine an optimal sequence automatically.
Optimal with respect to a minimum number of questions that need to be answered
so that the rest of the configuration can be deduced automatically due to constraints.
In this section we present our solution to this problem. On the one hand we hope
that this automation can help reduce the required user input and therefore reduce
potential errors. On the other hand keeping in mind that too much guidance can be
counterproductive [54] and that the tool should adapt to the user’s needs, we developed
a robust algorithm that does not depend on the user actually following the proposed
sequence. However, there are many pitfalls to consider when thinking about the optimal
sequence which are discussed next.

5.2.1 Pitfalls

The main dilemma is that, the optimal sequence of questions differs depending on the
configuration. As such, there cannot be a single sequence of questions that is optimal
for every configuration. This is especially a problem because of the sheer number of
configurations; a decision model containing n questions and each question qi having mi

choices, the following boundaries are given:

(i) The number of different configurations can be greatly reduced by relations, but is

at most
n∏

i=1

mi, however usually even the reduced number of configurations is very

high and cannot be computed in reasonable time for mid-size and large decision
models.

(ii) Each possible configuration has n! sequence permutations to be generated from.

Since we do not have a priori knowledge of how the questions will be answered, we
must optimize the sequence of questions such that any configuration can be derived
with a small number of answers. This is only possible through incremental reasoning.
As the user starts answering questions, we rearrange the questions on-the-fly such that
the sequence of the remaining questions is optimized according to the now reduced
set of possible configurations (i. e., every answer tells us something about the user’s
intention).

We assert that the task of optimizing the sequence of questions requires the under-
standing of as many configurations as possible (ideally all configurations). However,
the number of configurations increases exponentially with the number of questions and
their choices (despite the relations) and it becomes unlikely for a human user (creator
and / or decision maker) to guess the appropriate sequence of questions. Even for users
with domain knowledge, it becomes virtually impossible to manually devise an opti-
mal (or even good enough) sequence of questions. Moreover, simple changes to the
model (add / remove questions, choices, or relations) may affect the optimal sequence
significantly, making a manual solution to this problem obsolete quickly. Additionally,

38

5.2 Guidance Calculation

an optimal sequence might not be an intuitive one, answering certain questions before
other questions might not make sense to some users. If a model contains relevancy
relations, one must ensure that questions that determine the relevancy of other ques-
tions precede those questions. Otherwise the user may decide questions that become
irrelevant later and therefore the needed user input has unnecessarily increased.

Another pitfall are questions with choices that have very different impacts on the
configuration space, such questions should not be overestimated. An extreme case of
such an asymmetric question would be, for instance, a question with one choice that
leads to a configuration instantly – meaning decisions can be derived automatically for
all the other questions – and other choices that have no impact on other questions what-
soever. The reason that such questions should not be overestimated is, that choices
with a big impact on the system limit the number of reachable configurations greatly.
On the contrary the other choices of such an asymmetric question leave more configu-
rations within reach. As mentioned before the dilemma is, that we want to provide the
shortest sequence to as many configurations as possible. Thus if there is a chance that
a decision could be made automatically for such a question it should not be the next
question suggested to the user. The previous pitfall is also the basis of the following
dilemma: Assuming no domain knowledge is incorporated each choice of a questions
by itself has an equal chance of getting selected. But the fact that each choice can
lead to a different number of configurations contradicts this statement, assuming each
configuration is equally likely.

Finally one has to be aware of the cyclic nature of decision models, if the questions
are nodes and the relations the edges cyclic graphs are not that uncommon. Also
relations can be modeled in different ways without changing the impact of the relation.
Furthermore, although the relation is defined in one direction, reasoning is effected in
both directions. This implies that even in graphs containing no cycles the approach
has to handle cycles during reasoning.

In summary, the pitfalls are:

(i) No single, optimal sequence of questions exists.

(ii) The optimal sequence changes with every answer.

(iii) The optimal sequence changes with every model change.

(iv) The optimal sequence is not necessarily an intuitive sequence.

(v) The optimal sequence must respect relevancy relations.

(vi) Choices how to answer questions are not equally likely to be selected.

(vii) Questions are connected in a cyclic manner via relations.

5.2.2 Approach

Our approach automatically and quickly determines the near optimal sequence in which
questions are presented to the decision maker, specifically to reduce the number of ques-

39

5. APPROACH

tions a user has to answer. Our premise: a reduction in manual input implies an increase
in automation. For the decision maker, however, the optimal sequence of questions may
not necessarily be the most intuitive sequence. A user likely prefers to answer those
questions first that are easy to answer or most significant from their perspective. How-
ever, these criteria differ for every user and as such there is no single, ideal sequence
(neither intuitive nor optimal). Even though our approach fully automatically opti-
mizes the sequence of questions, it does not require the user to answer the questions
in the sequence presented. The user may answer questions arbitrarily in which case
our approach fully automatically optimizes the sequence of the remaining questions.
It is also possible for a creator to provide a “rough guide” for the decision maker, if
so desired (i. e., partial sequence of questions). Indeed, our approach effectively only
optimizes the sequence for the next question because the sequence of the remaining
question almost always changes with additional answers (i. e., the more answers pro-
vided, the more obvious becomes the user’s intention which is then considered as part
of our reasoning process). A satisfactory next question should be one that fulfills the
following criteria:

(i) It has the least potential to be answered automatically.

(ii) It has the most potential of answering many other questions.

On a finer level of granularity, these criteria can be applied to choices of questions
also. If a question cannot be answered automatically but its choices can be reduced
automatically then the probability of reduction is a benefit as well. Questions or choices
that are independent of others can be answered in a random sequence. This is also
true for “clusters of questions”, where questions within clusters are dependent on one
another but independent of questions in other clusters.

5.2.3 Computing the Ideal Solution

If it were possible to compute all possible configurations of a system in advance, we
could generate an a priori optimal sequence of questions for the decision maker. Al-
though this solution is practically infeasible due to the exponential number of possible
configurations. We will discuss it next to better illustrate the workings of our solution.
The optimal, yet unscalable approach is fairly easily understandable. Our near-optimal,
yet scalable solution in essence approximates its reasoning.

For the sake of simplicity we just consider two questions out of the original seven de-
fined in our illustration, Laptop T ype and Screen Resolution. The matrix in Figure 5.2
(left side) depicts all possible configurations with these two questions. The exponential
growth is evident in the fact that each question adds another dimension, e. g. adding
a third question would result in a cube and so on. Relations can be seen as an a priori
elimination of configurations: a priori because relations implicitly eliminate configu-
rations of the pool of all possible configurations. Those eliminated configurations are
represented by the grayed out cells (dark gray) in Figure 5.2. It is important to note

40

5.2 Guidance Calculation

Figure 5.2: Valid configurations considering relations.

that relations are not directional. We previously defined the Screen Resolution ques-
tion to restrict the Laptop T ype question; however, in return, the Laptop T ype question
also restricts the Screen Resolution question. Therefore, relations do not impose a se-
quence on how to answer questions.

For our approach, the expected elimination is the most important criterion for
deciding how to order questions. Our goal is to order questions such that they maximize
the expected elimination. In other words, the faster we eliminate configurations the
user does not care about (through selection), the faster we reach the one configuration
the user is aiming for. Without a priori knowledge about likelihoods of configurations,
we must assume that all configurations are equally likely. Counting the number of
valid configurations for each row and column in Figure 5.2, we see that some choices of
questions lead to a single valid configuration (e. g., Laptop T ypeInspirion as indicated on
the right side of Figure 5.2, in addition to the relation the user selection also eliminates
configurations as indicated with the light grayed out cells), some choices lead to two
valid configurations (e. g., Screen ResolutionXGA), and some choices lead to three valid
configurations (e. g., Laptop T ypeLatitude). The elimination of configurations through
relations thus changes the impact of questions. Without the relation, the Laptop T ype
and Screen Resolution questions would be equal. The relation, however, tips the scale
in favor of the Screen Resolution question, as is discussed next:

Elimination Likelihood of Laptop Type Choices

The expectation value defines the expected outcome for discrete, random events. The
following states the standard expectation value as the sum of a random variable xi

multiplied by its probability of occurring p(xi): E(x) =
n∑

i=1

p(xi) ∗ xi

Applied to our problem of eliminating configurations, xi is the number of eliminated
configurations by selecting a choice for a given question and p(xi) is the likelihood that

41

5. APPROACH

this elimination occurs. Here we have two possibilities: i) each choice has an equal
chance or ii) each configuration has an equal chance. As was discussed above, in the
absence of any feedback on the likelihood of configurations occurring, all configurations
become equally likely and p(xi) is then the ratio of remaining configurations after
selection divided by all available configurations:

E(qi) =
#choices

∑

i=1

remaining configurations

all configurations
∗ eliminated configurations

The selection of Laptop T ypeInspirion, as shown in Figure 5.2, would eliminate 6
configurations with a probability of 1/7 (1 configuration out of 7 is still possible). The
selection of Laptop T ypeLatitude eliminates 4 configurations with a probability of 3/7.
The selection of Laptop T ypeV ostro also eliminates 4 configurations with the probability
of 3/7. Adding up these benefits and likelihoods gives us: 6 ∗ 1/7 + 4 ∗ 3/7 + 4 ∗ 3/7 ≈ 4.29

Elimination Likelihood of Screen Resolution Choices

The selection of both Screen ResolutionXGA and Screen ResolutionW UXGA eliminate
5 configurations with a likelihood of 2/7. Screen ResolutionW XGA eliminates 4 configu-
rations each with a likelihood 3/7. The expectation value is thus: 5∗2/7+4∗3/7+5∗2/7 ≈

4.57
The sum of eliminations and their likelihoods reveal that the choices for Laptop T ype

are likely to eliminate less configurations than the choices for Screen Resolution. As
we discussed before, the problem of deciding the optimal sequence of question is simply
about deciding on the highest potential for eliminating configurations. The Screen
Resolution question is thus more significant and should be asked / answered first, the
Laptop T ype question next.

It is important to note that for configuration problems, the expectation value fa-
vors symmetric questions where the choices’ probabilities are more evenly distributed.
The choices of the Screen Resolution question had the likelihood 2/7, 3/7, and 2/7. The
choices of the Laptop T ype question had the likelihood 1/7, 3/7, and 3/7. The proba-
bilities of the Screen Resolution question where thus more symmetric, although the
difference in this case is not too big, consequently the expectation value favored the
Screen Resolution question.

5.2.4 Approximating the Ideal Solution

Our approach consists of three essential steps to optimize the sequence of questions.
Since an answer affects the sequence of the remaining questions, our approach repeats
these three steps after every answer given. These steps are:

(i) Simulating the effects of selecting choices. The effect of selecting a choice is either
the elimination of other choices or the elimination of entire questions, or none at
all. We quantify the effect as the gain of each selection.

42

5.2 Guidance Calculation

(ii) Combining the simulation effects (gains) to consider the impact of questions as a
whole rather than their choices.

(iii) Presenting our findings to guide the decision maker.

Our approach uses simulation to assess a choice’s expectation value. It can be best
described as exploring a series of “What happens if I answer the question by selecting
this choice?” questions. This problem is simplified by the fact that our approach only
ever investigates the next ideal question to answer. This can be done independently
for every question which is an important scalability property (i. e., we know that the
sequence changes after an answer and as such there is no benefit in investigating such
“what happens if” questions recursively).

The simulation considers the effect of a choice’s selection on itself and other ques-
tions. This benefit is quantified in our approach as a gain. How the gain is computed
depends on the relation. Recall that we distinguish between constraint relations and
relevancy relations. Next, we discuss the computation of gains for constraint relations
only. We discuss the computation of gains for relevancy relations later.

Constraint Relations Gain

For constraint relations, the gain is based on the percentage of choices eliminated per
question: 100 is equivalent to answering a question, 50 is equivalent to eliminating half
the choices of a question (i. e., answering 50% of a question). To simulate the gain for
selecting a choice, the following steps have to be taken:

(i) The gain starts at 100 always because selecting a choice answers its question at
the very least.

(ii) Next we investigate the relations the question is involved with and simulate the
effects of the selection. For all questions affected by the selection, we then add
the degree of reduction (e. g., 100 for a complete question answered, or 66 for 2/3

of the choices eliminated).

It is important to note that we value a question answered (gain + 100) analogous to
two questions’ choices reduced by 50% (gain + 50 + 50). Also note that this simulation
considers the effect of a single choice’s selection but not the combined effect of different
choices as an optimal solution would do – the latter is needed for optimality; however,
we will demonstrate later that we are near optimal and thus the combined effect is less
important.

To illustrate this approach, let us take another look at our illustration in Figure 3.1.
Initially, a simulation for each choice has to be performed. The sequence in which these
simulations are performed is irrelevant. For instance, we could start with the choice
XGA of the Screen Resolution question.

SelectionGain(Screen Resolution , XGA) := 100 +

EliminationGain(Laptop Type , { Inspirion })

43

5. APPROACH

EliminationGain(Laptop Type , { Inspirion }) := 1/3 * 100

// result

SelectionGain(Screen Resolution , XGA) :≈ 133

Selecting XGA has a gain of 100 (because it answers the Screen Resolution ques-
tion). Furthermore, the selection of XGA affects the Laptop T ype question. We know
that Screen ResolutionXGA is not available for Inspirion laptops, thus it can be elimi-
nated when XGA is selected (1/3

rd of the Laptop T ype choices are eliminated: 1/3∗100).
The gain for the selection is therefore: Screen ResolutionXGA = 100 + 1/3 ∗ 100 ≈ 133

The above example showed that the selection gain is based on the elimination
gain (for eliminating choices in other questions). Elimination, in turn, may trigger a
subsequent selection if all but one choice of a question is eliminated. We encounter
such a situation while simulating the selection of the Laptop T ypeInspirion:

SelectionGain(Laptop Type , Inspirion) := 100 +

EliminationGain(Screen Size , {13.3 ’ ’}) +

EliminationGain(Screen Resolution , {XGA , WUXGA }) +

EliminationGain(Webcam , {no })

EliminationGain(Screen Size , {13.3 ’ ’}) := 1/3 * 100

EliminationGain(Screen Resolution , {XGA , WUXGA }) :=

SelectionGain(Screen Resolution , WXGA)

SelectionGain(Screen Resolution , WXGA) := 100

EliminationGain(Webcam , {no }) :=

SelectionGain(Webcam , yes)

SelectionGain(Webcam , yes) := 100

// result

SelectionGain(Laptop Type , Inspirion) :≈ 333

The simulation of Laptop T ypeInspirion is similar to the simulation of Screen
ResolutionXGA except that the Laptop T ypeInspirion eliminates all but one choice from
both the Screen Resolution and W ebcam questions. Reducing a set of choices for a
question to one choice is synonymous to answering that question (i. e., we can automat-
ically select the only remaining choice). The gain for Laptop T ypeInspirion thus includes
the gains for Screen ResolutionW XGA and W ebcamyes. Normally, the gain calculation
for W ebcamyeswould include the elimination of Laptop T ypeLatitude. However, since
the selection of Inspirion already eliminated this choice no additional gain is added
(i. e., we do not double count gains).

Thus far, we discussed gains for constraint relations in detail. Before we can discuss
gains for relevancy relations, we must first discuss how to compose the gains of choices
to the gains of their questions.

Gain Composition

Until now, we computed the gain for single choices only. To assess the gain for the
overall question, we have to compose the gains of its choices. The most obvious method

44

5.2 Guidance Calculation

of composition would be to compute the average gain of the choices (mean value);
however, doing so would not give satisfactory results (although this method would be
sufficient for our small illustration). The reason for that is the symmetry issue discussed
in Section 5.2.3. Expectation values favor symmetric likelihoods and since our gain
represents likelihood, we must favor symmetric gains (e. g., a question with two choice
gains = {200, 200} would be preferred over a question with choice gains = {300, 100}).
The choices of asymmetric questions divide the possible configurations unevenly. If one
choice has a very high gain, the selection of this choice is not as likely as those of others
since it would lead to a smaller subset of configurations. Statistically, a question with
choices having symmetric gains should thus be favored. Mathematically, this is simply
achieved through computing the product of the gains of the choices:

Gain(Question) =
∏

choice∈ChoicesQuestion

Gain(Choice)

Due to the fact that all choice gain values are greater or equal to 100, the product
of choice values is always greater than each individual choice value. To illustrate this,
the following computes the gain for the Screen Resolution question:
Gain(Screen Resolution) := SelectionGain(Screen Resolution , XGA) *

SelectionGain(Screen Resolution , WXGA) *

SelectionGain(Screen Resolution , WUXGA)

Gain(Screen Resolution):= 133 * 100 * 133 = 1768900

The expectation value (Section 5.2.3) also favors questions with more choices over
questions with fewer choices. By multiplying the choice gains to a question gain, we in
essence also favor questions with more choices; however, a question with fewer choices
can overtake a question with more choices if its choice gains are significantly higher or
more symmetrical.

Relevancy Relations Gains

Until now, we ignored the gain computation for relevancy questions. We now address
this issue. Relevancy relations identify questions that only need / should be answered
in certain situations. For example, the Memory, Screen Size, Screen Resolution,
W ebcam, Operating System, and Laptop T ype questions should only be answered if
the user chooses to configure a laptop (Laptopyes). Relevancy relations thus impose
a sequence among questions and we need to ensure that questions that triggers the
relevancy are answered before the potentially irrelevant questions (e. g., the Laptop
question is asked before the other questions in our illustration). To ensure that the
potentially irrelevant questions are never offered before the questions that trigger the
relevancy, we add the gain of the potentially irrelevant question to that of the triggering
one. The simulation of the choices for the Laptop question is depicted next:
SelectionGain(Laptop , yes) := 100

SelectionGain(Laptop , no):= 100 + Gain(Memory) +

Gain(Screen Size) + Gain (Screen Resolution) + Gain (Webcam) +

Gain(Operating System) + Gain(Laptop Type)

45

5. APPROACH

Figure 5.3: C2O Configurator screenshots – the bigger the font the higher the calculated
gain for the question. Answering a question changes the importance of the other questions.

The computation reflects the fact that answering Laptop with the answer no also
answers six other questions (i. e., not having to ask those questions is equivalent to
having answered them). The gain computation for relevancy relations appears similar
to that of constraint relations. However, note that here we add the gains for whole
questions rather than the gains for individual choices. This ensures that the question
that triggers the relevancy has a bigger gain than the potentially irrelevant questions.

Impact of Answering Questions

After choice gains are composed into question gains, the questions are ordered from
the most promising (highest gain) to the least promising one (lowest gain). In this
case, “promising” means in the question that is most likely to lead to the desired
configuration optimally if answered next. The initial sequence for our example would be
Laptop, Laptop T ype, Screen Size, Screen Resolution, Memory, Operating System,
and W ebcam according to their calculated gain values:

Gain(Laptop) := 100 *

(100 + 8857800 + 1768900 + 1768900 + 20000 + 20000 + 17689) =

1245338900

Gain(Laptop Type) := 333 * 200 * 133 = 8857800

Gain(Screen Size) := 133 * 133 * 100 = 1768900

Gain(Screen Resolution) := 133 * 100 * 133 = 1768900

Gain(Memory) := 100 * 200 = 20000

Gain(Operating System) := 200 * 100 = 20000

Gain(Webcam) := 133 * 133 = 17689

The Laptop question is the most important question due to the relevancy relation.
The next important question is the Laptop T ype question and the W ebcam question
is the least significant one of all. We discussed earlier that the sequence of questions
may change with answers. Ignoring the Laptop question, the Laptop T ype question
is the most significant one. One way to visualize this, is to set the font size of a
question according to its significance, as can be seen in a screenshots taken from our
C2O Configurator tool that implements our approach, depicted in Figure 5.3 (left-hand

46

5.2 Guidance Calculation

side). If we answer this question, the gains for the remaining questions change. For
example, answering Laptop T ypeV ostro eliminates Screen Size12.1′′ as a result the gains
for the remaining questions become change (Figure 5.3 right-hand side). More details
on our configurator tool will be presented in detail in Chapter 6.

5.2.5 Choice Gain Algorithm

The following summarizes the algorithm for computing the selection gain and elimi-
nation gain in pseudo code. The computation of the relevancy gains is omitted for
brevity and simplicity. We see that SelectionGain takes as the parameter the ques-
tion and choice selected. SelectionGain then explores all relations, identifies which
choices they eliminate, and then assesses the gains of these eliminations by calling
EliminationGain. EliminationGain returns a gain, if it was not considered previ-
ously. It is similar to SelectionGain, except that it handles the special case where
the size of the remaining choices (after elimination) becomes one, in which case the
remaining choice is selected automatically (thus triggering a SelectionGain call).

function SelectionGain(question , selection)

SelectionGain := 100

for each relation in GetRelations(question)

relatedQuestions := GetRelatedQuestions (relation)

choices := GetEliminated(relatedQuestions , selection)

gain := EliminationGain(relatedQuestions , choices)

SelectionGain := SelectionGain + gain

end

end

function EliminationGain(question , exclude)

if IsAnswered (question) then EliminationGain :=0, exit

remaining := GetValidChoices(question) \ exclude

if Size(remaining) == 1 then

EliminationGain := SelectionGain(question , remaining)

else

all := Size(GetValidchoices(question))

EliminationGain := (Size(exclude) / all) * 100

for each relation in GetRelations(question)

relatedQuestions := GetRelatedQuestions (relation)

choices := GetEliminated(relatedQuestions , remaining)

gain := EliminationGain(relatedQuestions , choices)

EliminationGain := EliminationGain + gain

end

end

end

To avoid gains getting too big we use a little trick for the gain composition. Our
ComposeGain function uses a logarithmic addition instead of the multiplication, intro-
ducing some small but negligible rounding errors but avoiding overflows with standard
integer types.

function ComposeGain (gains)

ComposeGain := 0

for each gain in gains

ComposeGain := ComposeGain + Log (gain)

end

end

47

5. APPROACH

5.3 Living with Inconsistencies

As part of our vision we proposed not imposing solutions onto decision makers, like
for example the sequence questions have to be answered in or the time when a fix has
to be performed in case of an inconsistency. In this section we present our solution to
living with inconsistencies. We hope that this enables decision makers to work more
naturally and adapt the configurator to the decision maker’s needs.

5.3.1 SAT-based Reasoning in the Presence of Inconsistencies

As mentioned in Section 2.1.2, as long as a CNF with assumptions evaluates to SAT, no
inconsistency is detected. Adding additional clauses and / or assumptions may change
SAT to UNSAT, but once the SAT solver is in an UNSAT (inconsistent) state, adding
additional clauses and / or assumptions will have no effect at all because the SAT solver
will continue to evaluate to UNSAT. As explained in Section 2.2.3, since the SAT solver
is used for more then just detecting inconsistencies, automations are lost too. For
example, the ability to automatically derive assumptions i) to (partially) auto-complete
the configuration process or ii) show decision effects, is lost.

If the tolerance to inconsistencies should not change the SAT-based automation then
the only option is isolation. It is important to distinguish between isolating and fixing
an inconsistency at this point: Isolating means sandboxing clauses and / or assumptions
that cause an inconsistency, in other words identify contributors and ignore them for
reasoning purposes. Fixing would go one step further and in addition change those
clauses and / or assumptions in such a way the inconsistency would be resolved. So the
isolation can be seen as a first step of an actual fix without committing on how to fix.

In the domain of decision-making, isolating clauses and assumptions account for
different parts. Assumptions are used to express user decisions and derived decisions
(high-level), whereas clauses are used to define the decision model (low-level). As
mentioned earlier we work under the assumption that the decision model is correct,
and that the user decisions are contradictory to the model (much like we presume that
in case of inconsistencies in design models, the user model is at fault and not the meta
model that defines the modeling language). Therefore we only care about isolating
user assumptions, ignoring the clauses. So looking at the example from Table 3.2 with
the inconsistency detected at the fifth answer, given the constraints and considering all
possibilities, the following decisions contribute to the inconsistency: Screen Size12.1′′ ,
Screen ResolutionXGA and W ebcamyes. As a matter of fact isolating any one of these
is sufficient to get meaningful results again. At this point the user could continue
configuring the product and fix the problem later on. Once the user decides to fix the
problem, the defective contributor has to be identified by the user, since choosing a
random contributor often does not suffice. The user then has to provide a different,
valid decision for the identified question, resulting in the fix of the problem.

48

5.3 Living with Inconsistencies

5.3.2 SAT Concepts that deal with Managing Inconsistencies

Before we go into detail explaining different isolation strategies, we first need to intro-
duce additional (high-level) SAT concepts [23, 63]. First an important SAT concept is
a minimal unsatisfiable set (MUS) which is defined by the properties of being minimal
and that removing any single assumption results in the remaining set being satisfiable.
In our example configuration illustrated in Table 3.2 only one MUS of user assumptions
is present {Screen Size12.1′′ , Screen ResolutionXGA, W ebcamyes}. However, usually
inconsistencies consist of many possibly overlapping MUSes, as a consequence isolating
one assumption of one MUS does not necessarily result in a satisfiable SAT model. An-
other concept is the minimal correcting set (MCS) which is defined by the properties of
being minimal and that removing it from reasoning, results in a satisfiable SAT model.
In our illustration the MCSes are {Screen Size12.1′′}, {Screen ResolutionXGA}, and
{W ebcamyes}. Generally speaking MUSes and MCSes are connected via hitting sets,
meaning that every MCS is composed of a single element from every MUS. In addition
to this relation MCSes are the complement of a maximum satisfiable set (MSS). As
the name already states a MSS is a set of assumptions that is satisfiable and of the
maximum size it can be. An example for one possible MCS and its complementary
MSS given our illustration, is the MCS {Screen Size12.1′′} and the MSS {Memory8GB ,
Screen ResolutionXGA, W ebcamyes}.

5.3.3 Different Isolation Strategies

In the following the four different isolation strategies we investigated will be explained
in detail, with the help of Table 5.1. This table continues the configuration example
from Table 3.2 where the derived state after the fourth questions was complete, but
introduces a conflicting user assumption at the fifth question. We will solely focus on
isolating user assumptions and recalculating derived assumptions (high-level facts dur-
ing SAT-based reasoning) and assume that the decision models themselves are correct
and therefore the clauses (low-level facts during SAT-based reasoning) do not need to be
changed. However, it should be pointed out that two out of the four isolation strategies
(MaxSAT and HUMUS) could also be applied to isolate low-level facts [63, 64].

5.3.3.1 Disregard All Strategy

A trivial way to ensure a correct state in the presence of inconsistencies is to ignore
everything that happened so far, meaning that every single assumption before the
inconsistency was encountered is isolated from future reasoning. This solution may
seem mundane; however, we can think of it as the worst-case strategy against which
others can be compared. This strategy is also specific to high-level isolation since
isolating all clauses hardly makes sense. The result of this isolation strategy can be
seen in Table 5.1: All user assumptions are isolated resulting in no derived assumptions
for future questions, but also for already decided questions – basically the initial state
is restored.

49

5. APPROACH

Table 5.1: Isolation strategies based on the example in Table 3.2.

Decision
4thq 5thq

s u

D
is

re
ga

rd
a
ll

S
ki

p

M
a
xS

A
T

H
U

M
U

S

s s s s

Laptopyes 1 1 1 1

Laptopno 0 0 0 0
Screen Size12.1′′ 1 1 1

Screen Size13.3′′ 0 0 0
Screen Size15.4′′ 0 0 0

Memory2GB 0 0 0 0
Memory8GB 1 1 1 1

Screen ResolutionXGA 1 1 0
Screen ResolutionW XGA 0 0 1

Screen ResolutionW UXGA 0 0 0
W ebcamyes 0 1? 0 1

W ebcamno 1 1 0
Operating System32bit 0 0 0 0
Operating System64bit 1 1 1 1
Laptop T ypeInspirion 0 0 1
Laptop T ypeLatitude 1 1 0
Laptop T ypeV ostro 0 0 0

q. . .question, u. . .user assumption, s. . .derived state, 0. . .false, 1. . .true

5.3.3.2 Skip Strategy

In order to be consistent again, this strategy skips the user assumption immediately
preceding the detection of the inconsistency. Unless clauses are added iteratively this
also makes no sense for a low-level isolation strategy (hence it applies to high-level facts
only). The result of this isolation strategy can be seen in Table 5.1: The conflicting
user assumption W ebcamyes is isolated (skipped) – basically the state before the incon-
sistency detection is kept, requiring a simple history of user assumptions to implement
it.

5.3.3.3 MaxSAT Strategy

MaxSAT stands for maximum satisfiability of the highest cardinality [64]. The basic
concept is to identify a set of clauses that can be satisfied with a maximum cardinality.
In our case, since we do not care about clauses but assumptions, this idea can be

50

5.3 Living with Inconsistencies

translated to keeping as many user assumptions as possible that do not contradict
each other, or in other words find the “closest” solution. After a MaxSAT solution is
calculated, every assumption not contained in the solution is isolated. While Disregard
All and Skip are isolation strategies with a single solution, MaxSAT is different in
that there could be multiple, alternative “closest” solutions with an equal number of
user assumptions kept. For the given illustration there are three possible solutions
of the same cardinality. Since MaxSAT is non-deterministic any of those alternatives
can be the result. The one solution presented in Table 5.1 isolates the user assumption
Screen ResolutionXGA, the most noticeable effects of this isolation are that the derived
positive assumption Screen ResolutionW XGA and that Laptop T ypeInspirion is derived
instead of Laptop T ypeLatitude. The isolation solution from Skip is a special case of a
MaxSAT isolation; however, it may not always be desired to isolate the last decision
made by the user.

The implementation of the MaxSAT strategy is realized by searching for a MSS
with maximum cardinality, by iterating over user assumptions subsets starting with
the biggest down to the smallest ones. As soon as a subset is found that is satisfiable,
every assumption that is not contained in this set is isolated. MaxSAT typically returns
the first MSS it finds, ignoring potential other MSS of the same size.

5.3.3.4 HUMUS Strategy

HUMUS stands for High-level Union of Minimal Unsatisfiable Sets; it is a concept based
on the calculation of all Minimal Unsatisfiable Sets (MUSes) [63], which again targets
more at the low-level. The basic concept behind it is to isolate all contributors (directly
and indirectly) of the inconsistency and only keep assumptions that have no relation
to the inconsistency. The result of this isolation strategy is depicted in Table 5.1, by
isolating all contributors the only impartial assumption Memory8GB is kept. Note
that the HUMUS calculation only returns a single result like Skip or Disregard All
because an user assumption either contributes to the inconsistency or it does not; if it
contributes it is per definition an element of HUMUS.

The implementation of the HUMUS strategy takes a shortcut in comparison to the
approach of Liffiton to compute all MUSes [63], since we only care about the union
of the MUSes and not the individual MUSes themselves. Our implementation uses a
variant of Liffiton’s [63] approach to calculate MSSes using assumptions over clause
selector variables. If a satisfiable subset of clauses has been found, which cannot be
increased in size without making the resulting formula unsatisfiable, the complement
of this set is an MCS. This particular satisfiable subset is then blocked with a blocking
clause. We do not use at-most constraints, this avoids having to reset the SAT solver
as soon as an MCS of a different size is found. After having calculated all the MCSes
we simply calculate the union of the MCSes, since the resulting set is the same as the
union of all MUSes due to the relation via hitting sets.

51

5. APPROACH

5.3.4 Discussion of Isolation Strategies

As can be observed in Table 5.1 the different isolation strategies, described in the last
section, result in different states after the inconsistency is encountered. Thus they do
not achieve the same result but rather provide alternatives on how to proceed after
an inconsistency is encountered. All strategies have in common that the SAT-based
automations appear functional again (SAT is returned instead of UNSAT). But how
can one tell which resulting state is the most complete or correct one, without knowing
how the user eventually will fix the inconsistency? Obviously there must be qualitative
differences once the user fix is known and the reasoning so far can be analyzed with
respect to the now known fix. These qualitative differences can be divided into three
categories and are discussed next.

5.3.4.1 Incomplete Reasoning

If the isolation strategy removes correct user assumptions then the reasoning gets in-
complete due to missing information in the reasoning process (not as much is inferred
as could be). As a result user guidance (see Section 2.2.3) would potentially offer fewer
derived assumptions. For decision-making scenarios, fewer derived assumptions are not
problematic except that the degree of automation decreases (hence, more isolation im-
plies less automation). However, do note that completeness during user guidance is a
loose concept. For example, at the beginning of the configuration process no user guid-
ance is available, because no user assumptions are available to reason with. During the
configuration process, depending on how many relations the given answers are in, the
number of derived assumptions increases steadily. And at the end of the configuration
process, when all is known, naturally guidance would be best since the reasoning is
complete, but that is also the point where guidance is not needed anymore.

Generally speaking, as can already be observed in Section 5.3.3, the Disregard All
isolation strategy results in the most incomplete reasoning possible (worst case), while
the MaxSAT and Skip strategies potentially suffer the least incomplete reasoning (best
case). For the HUMUS strategy the degree of incomplete reasoning could vary between
the best and the worst case depending on the number of constraints in the model and
therefore the number of involved assumptions. However, many constraints in a model
could indicate overlapping constraints and redundant information. For example, revisit-
ing the illustration in Figure 3.1, both Screen Size13.3′′ and Screen ResolutionW UXGA

result in the elimination of Laptop T ypeInspirion. So isolating only one of those two
assumptions would not result in incomplete reasoning (hence, isolation results in a po-
tential incompleteness only). Even if both assumptions would be isolated and cause
incompleteness due to something correct being isolated, new answers like W ebcamno

would re-provide this lost piece of information again (hence, isolation may lead to
temporary incompleteness only).

52

5.3 Living with Inconsistencies

5.3.4.2 Incorrect Reasoning

Incorrect reasoning is the result of reasoning with defects. Knowing how to fix an in-
consistency is crucial for determining incorrect reasoning because it identifies defects
that caused inconsistencies. Incorrect reasoning can be determined by analyzing the
effects that defects have on the reasoning process, if not isolated. Reasoning with de-
fects would mean that the guidance might leave out correct choices or even suggest
incorrect choices to follow-up questions. Since constraints are somewhat redundant as
was discussed above, a non-isolated defect might also lead to another inconsistency
later. That is, it may conflict with new user assumptions while tolerating inconsisten-
cies which seems more equivalent to postponing inconsistencies rather than tolerating
inconsistencies. Related to this problem is the detection of another inconsistency while
already tolerating an inconsistency. In this case it cannot be determined if it is an
inconsistency related to the inconsistency that was tolerated earlier or if it is in fact a
new, unrelated inconsistency.

When using the Disregard All and HUMUS isolation strategies one can be sure
to eliminate the defect, because Disregard All isolates all assumptions made by the
user prior to the inconsistency (and is as such conservative) and HUMUS computes all
assumptions involved in the inconsistency (directly and indirectly). HUMUS, in the
worst case, could isolate everything like Disregard All if all assumptions are contributors
to the inconsistency. On the other hand with the MaxSAT and Skip strategies it is the
inconsistency that is eliminated and not necessarily the assumption(s) that the user will
change later when fixing (though by random chance these strategies may also isolate
these assumptions). It follows that one cannot be sure if the configuration process is
being continued with incorrect derived assumptions based on something that will be
fixed and hence the user should not fully trust the results derived from these kinds
of automations. In other words MaxSAT and Skip are maximizing what assumptions
to keep (they isolate less) which likely leads to less incomplete reasoning, though at
the expense of incorrect reasoning. Disregard All and HUMUS likely lead to more
incomplete reasoning, though they are guaranteed not to lead to incorrect reasoning –
in the presence of inconsistencies.

So in regard to goal C1 from Table 4.1, it is possible to always identify the defective
decision. However, it depends on the isolation strategy when it is known for sure that
the defective decision was identified. And in reference to goal C2 from Table 4.1, it is
possible to reason correctly in the presence of inconsistencies when the Disregard All
or the HUMUS isolation strategy is used.

5.3.4.3 Revisitation

Depending on the use of the SAT solver this could be more or less important. In
decision-making scenarios this means that the more user assumptions are isolated the
more questions have to be potentially revisited at a later point in time (less automation
for the end user). As with incomplete reasoning this issue is the biggest for the Disregard
All approach, the smallest for the MaxSAT and Skip approaches, and highly depends

53

5. APPROACH

on the model and situation for the HUMUS approach.

54

Chapter 6

Proof of Concept

“ Design is a funny word. Some

people think design means how it

looks. But of course, if you dig

deeper, it’s really how it works. ”
– Steve Jobs

One example of applying our “behind the curtains” approaches is our proof of concept
tool. In this chapter we will introduce the C2O – Configurator 2.0 – tool, one possibility
of how to visualize our guidance calculations and integrate them with a tool. First we
will give a short summary of the specific goals of the tool in Section 6.1. Next we
provide an overview over the tool architecture in Section 6.2, after that we will explain
visualization aspects in Section 6.3.

6.1 Goals

The main goal for the C2O configurator tool was to develop one possibility of how to
present our reasoning approaches. We wanted to provide a clean and intuitive user
interface that diversifies on existing configurators, not only by providing new guidance
aspects to the decision maker, but also by changing the typical look of configurators.

It should not restrict the decision maker in any way on what questions she wants
to answer first and of course also should not hinder her when she wants to make
conflicting decisions. On the other hand we wanted to provide as much guidance as
possible without being too intrusive. Thus realizing our main overall goals of preventing
and managing inconsistencies during configuration.

6.2 Tool Architecture

The C2O configurator tool is built on the reasoning architecture described in Section 5.1
and communicates with it via events as depicted in Figure 6.1. Internally it keeps a

55

6. PROOF OF CONCEPT

Figure 6.1: Overview of the C2O Configurator architecture.

state of user decisions that is separated from that of the reasoning engine. This is
necessary because in the case of inconsistencies user decisions get isolated from reason-
ing. However, in the user interface we want to retain those decisions and visualize this
aspect to the decision maker. Furthermore, because our preferred isolation strategy is
HUMUS, we know that after an inconsistency is resolved, decisions that were isolated
might be viable again and should not have to be remade by the decision maker.

Currently, only the interaction between the decision maker and the system has a
graphical user interface, defining questions, choices and relations is done programmat-
ically.

6.3 Visualization Aspects

The visualization aspects can be categorized into three type of aspects, i) the general
visualization of decision models, ii) the visualization of the guidance calculation and
iii) the management of inconsistencies as described in the next sections.

6.3.1 Decision Models

Decision models are visualized in the C2O configurator tool as shown in Figure 6.2 for
our illustration. In comparison to state-of-the-art configurator tools we turned away
from the usual hierarchical way of visualizing the questions and embrace the chaos.
The choices of one question are presented on the left as soon as the decision maker
clicks on a question. When it comes to relations the visualization is rather crude,
constraint relations are not visualized at all. However, by clicking on the “?” besides
one choice one can find out what the effect of selecting the choice would be, as shown
for Laptopyes in Figure 6.2. While some configurators have the ability to visualize
constraints (e. g. the S2T2 [35]), usually constraints such as cross-tree constraints are

56

6.3 Visualization Aspects

Figure 6.2: Visualization of the illustrative example in the C2O Configurator.

Figure 6.3: Visualization of the guidance calculation.

not visualized in configurators. Although constraint relations are not visualized by
our tool, there is the ability to visualize the relevancy relations by hiding irrelevant
questions. When this feature is activated all questions but the Laptop question are
hidden from the decision maker at first, since the other questions only become relevant
after the decision Laptopyes was made. As soon as they become relevant they will also
be shown again to the decision maker.

6.3.2 Guidance

The screenshot shown in Figure 6.2 is without our guidance enabled. Once it is enabled
and the potential to be the next question in order to minimize input is calculated for
each question, it is visualized by making the font bigger, the higher the potential to lead
to the shortest path for any configuration, the bigger the font. As a result, as shown
in Figure 6.3, after the decision Laptopyes is made by the decision maker, visualized by
making it black and show the selection yes with the question, the remaining questions
are shown again with different font sizes. At this point the decision maker has a clear
feedback on what questions at this point in the configuration process would lead to
a configuration faster. However, she can still choose to ignore these suggestions and
make, for example, the decisions Screen Size12.1′′ and Screen ResolutionXGA.

The incremental calculation and as a result the dynamic adaption to the current

57

6. PROOF OF CONCEPT

Figure 6.4: Visualization of derived decisions.

Figure 6.5: Explaining an inconsistency.

state during the configuration process is evident in Figure 6.4, since the importance
of the questions has changed. Furthermore, Figure 6.4 also depicts that decisions can
be derived automatically by eliminating choices based on relations, visualized by the
grayed question captions with the selected choice shown beneath.

6.3.3 Inconsistencies

Because of automatically derived decisions, but also eliminated choices due to relations,
inconsistencies might be unavoidable. For instance, after the decision maker made the
three decisions Laptopyes, Screen Size12.1′′ and Screen ResolutionXGA the decision
W ebcamyes is no longer available. As a result W ebcamno is automatically derived and
clicking on the W ebcam question shows that yes is no longer available. With the help of
HUMUS the tool can now provide an explanation to the decision maker why W ebcamyes

is no longer available by clicking onto the “?” besides the choice yes, as depicted in
Figure 6.5. However, the tool also allows the decision maker to ignore that this choice
is disabled and lets her select it anyway, causing the inconsistency. At this point the
tool supports two alternative strategies shown in Figures 6.6 and 6.7. In Figure 6.6 all
contributing decisions are isolated, as visualized by the grayed out questions with their
selected choice beneath including W ebcamyes (in this case the decisions are light gray
meaning that each individually is still viable). However, one could argue that explicitly

58

6.3 Visualization Aspects

Figure 6.6: Causing an inconsistency.

Figure 6.7: Causing an inconsistency with trust.

causing an inconsistency means that the decision that caused the inconsistency must
be very important to the decision maker, so as an alternative strategy one can decide
to trust this decision to be correct, as shown in Figure 6.7.

In either case decisions that were isolated from reasoning are kept in GUI and
selecting questions to answer, e. g., Laptop T ype now reveals a third state for choice vi-
sualization. In addition to a white background for choices that can be selected without
causing an inconsistency (e. g. see Figure 6.2 both yes and no for the question Laptop)
and to a dark gray background for disabled choices that would lead to a new incon-
sistency (e. g. see Figure 6.8 the choice Latitude) we have a light gray background.
Choices with a light gray background can be selected without causing a new incon-
sistency. However, they have an impact on existing inconsistencies by either reducing
the number of possibilities of how to fix them, or by resolving them automatically. To
find out what the exact impact is the decision maker has to either click on the “?”
besides the choice or simply select the choice. One example where a choice reduces
the number of possibilities is shown in Figure 6.9, by selecting Laptop T ypeV ostro, the
choice XGA is disabled for the Screen Size question, as a result it is then visualized
with dark gray background. Another example is shown in Figure 6.10, by selecting
Laptop T ypeInspirion, only the choice W XGA is viable for the Screen Resolution and
Screen Size12.1′′ becomes compatible again with the other user decisions. As a result
the answer for the Screen Resolution is changed automatically, which is indicated to

59

6. PROOF OF CONCEPT

Figure 6.8: Choices impacting the inconsistency.

Figure 6.9: Reducing the number of possible fixes for an inconsistency.

Figure 6.10: Automatically resolving an inconsistency.

the decision maker and the decision Screen Size12.1′′ is again displayed as a consistent
user decision and the inconsistency is resolved.

60

Chapter 7

Evaluation

“ The true delight is in the finding

out rather than in the knowing. ”
– Isaac Asimov

Since user interaction scenarios are hard to evaluate and are often subjective, we focused
our evaluation efforts on the reasoning techniques behind so far. Those can be tested
and measured with the usage of random data, covering all possible scenarios from best
cases to worst cases.

This chapter will be separated into several sections, each dealing with the evaluation
of an independent approach. Section 7.1 will present our evaluation for the guidance
calculation, followed by the evaluation of living with inconsistencies in Section 7.2.
After that results on the potential of living with inconsistencies for fixing purposes
will be presented in Section 7.3, followed by a discussion about the implications of
those results for decision-making in Section 7.4. The chapter will be round of with
preliminary results from the UML domain in Section 7.5.

7.1 Guidance Calculation Results

As explained in Section 5.2, our approach is incremental as it computes the next ques-
tion in the sequence on demand, depending on the current stage of the configuration
process. Our approach is therefore always in compliance with our vision to allow the
decision makers the freedom to answer those questions first that are most important
to them. The following evaluations thus focuses on the quality of of automatically
arranging the sequence of questions to minimize user input (see Table 4.1, goal O1).

7.1.1 Case Studies

We evaluated our approach on seven case studies with a different number of questions
(#q), choices (#c) and relations (#r), the details are shown in Table 7.1. The Dopler

61

7. EVALUATION

Table 7.1: Case studies overview

#q #c #r
#configurations

actual theoretic

Dopler 14 48 8 105 3,870,720
Graph 29 70 24 192 5.2E+10
Dell1 28 147 103

not computable

7.3E+17
Dell2 24 147 23 2.9E+15
Web 42 113 31 4.2E+17
CC-L2 59 137 20 2.4E+20
EShop 286 703 147 6E+115

model of the DOPLER product line tool suite [65], the complete laptop configura-
tor reverse engineered from the DELL homepage (during the period of February 9th

till February 12th 2009) in two versions (Dell1 and Dell2), the CC-L2, a steel plant
manufacturing product line model used by an Industry partner [32], and feature models
published on the online feature model repository of S.P.L.O.T. (Software Product Lines
Online Tools website 1). An Electronic Shopping system (EShop) by Sean Quan Lau, a
web portal (Web) by Marcilio Mendonca and a graph feature model (Graph) by Hong
Mei. The EShop model was the biggest one with 286 questions. Note that the feature
models were automatically converted into our own decision models (basically features
are represented by questions with up to three answers: yes, no, irrelevant) to be used
with our tool, hence the characteristics differ from those given on the S.P.L.O.T. web-
site. The reason for there being two DELL models is to show that significant differences
in how the product lines are modeled (while enabling the same set of products) do not
appear to have a large impact on our approach. As can be seen, the Dell1 makes
extensive use of relations as opposed to the Dell2.

To evaluate our approach, we compared it with the theoretic worst case and best
case. In the worst case, one needs to answer all questions (equal to the number of
questions in the model and thus the same for every configuration). The best case is
different for every configuration. To evaluate our approach and gauge its optimality,
we thus randomly selected configurations, reverse computed their best and worst cases
and then evaluated how our approach compared to these. Our approach’s optimality is
thus measured in terms of its position relative to the theoretic best case and worst case
as depicted in Figure 7.1. For validation purposes, all configurations for the smaller
models and 10,000 random configurations for the bigger models have been analyzed for
high statistical significance. The figure also shows the confidence intervals (95%) but
they are often so small that they are no longer visible due to the large sampling. The
results show that our approach is on average no more than two questions away from
the theoretical minimum for the small models and six questions for the EShop and Web
model. Our approach is thus 78-99% optimal and we achieved our goal of minimizing
user input.

1http://www.splot-research.org

62

http://www.splot-research.org

7.1 Guidance Calculation Results

0
25
50
75

100
125
150
175
200
225
250

a
v
er

a
g
e

#
of

qu
es

ti
on

s
n

ee
d
ed

Dopler Graph Dell1 Dell2 Web CC-L2 EShop
worst case our approach best case

Figure 7.1: Comparison optimality of the guidance calculation.

However the decision maker could ignore the proposed sequence and answer in any
sequence (highest degree of freedom possible), while still benefiting from the reasoning
about choices being eliminated and questions being answered. The question is, whether
following the proposed sequence is superior to such a more or less random sequence.
The results for each model are shown in Figure 7.2 as a percentage proportionally to
all configurations investigated. For each configuration an independent two-sample t-
test for unequal variance and sample size was performed (with a p-value of 0.05), to
test if there is a significant difference between our proposed and a random sequence.
These individual results were categorized into four classes: our approach is significantly
better, better, worse and significantly worse. This comparison was based on 1,000
randomly sequenced runs per configuration. A Kolmogorov-Smirnov comparison of all
the values for each model showed a significant difference with a p-value < 0.0001 for
each model. As can be seen, there were cases where a random sequence performed
better or even significantly better than our approach. This happens particularly with
the first question answered. Since at that time, nothing is known about the decision
maker’s intention (no question was answered), our approach always asks the same
question first. In some cases, this first question may not be an optimal question to ask
for a certain target configuration and the random approach is more likely to pick this
optimal, first question – hence, the random approach may out-compete our approach
occasionally. However, we do see that our approach is almost always significantly
better. Our approach to guided decision-making is thus an improvement over any
random approach (likely representing novice users and perhaps even expert users for
very complex configuration problems).

63

7. EVALUATION

0
10
20
30
40
50
60
70
80
90

100

%
of

a
ll

in
v
es

ti
g
a
te

d
co

n
f

ig
u

ra
ti

on
s

Dopler Graph Dell1 Dell2 Web CC-L2 EShop

significanly better better worse significanly worse

Figure 7.2: Overview of t-test results comparing our guidance calculation approach to a
random selection.

7.1.2 Computational Complexity

Our proposed approach is qualitative superior but does its computation scale? The
computational complexity of our approach depends on three variables: the number of
choices, the number of relations, and the number of questions.

To assess response time, we determined the time needed for proposing a sequence.
We evaluated every model and assessed the performance needed at varying degrees of
questions answered. The average times needed (each model and percentage point was
evaluated by 100 different configurations for high statistical significance) are shown in
Figure 7.3, according to how many questions were answered as a percentage of the
total number of questions. Their respective confidence intervals (95%) are not shown
to avoid further clutter and are in the range of 1% up to 12% (only in a few cases) of
the average values. The performance tests were conducted on an Intel® Core™ 2 Quad
Q9550 @ 2.83 GHz with 4GB RAM (although at the moment only one core is used).

Our finding is that there exists an initial time cost in calculating the sequence for
the first time (0 questions answered, especially high for the EShop model 56 seconds
and therefore cut off in the graph). After this initial cost (which can be pre-calculated
and cached), simulation time decreases with questions answered because eliminated
choices do not need to be considered any longer. The fluctuations in calculation time
can be explained by the different number of questions being affected by the elimination
effect of the last question answered before the measurement. As can be seen, the
simulation time is acceptable and grows linearly only with product line size. Given
that the largest evaluated product line contains over 280 questions and our approach’s
response time was almost always <2 seconds, we thus believe that this approach is
quite scalable and applicable to many product lines today, which answers the question
if our approach can be used in real-time (see goal S1 from Table 4.1). Nonetheless, we

64

7.2 Living with Inconsistencies Results

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200

0 10 20 30 40 50 60 70 80 90 100

ti
m

e
(m

s)

% of questions answered

bc

bc

bc

bc

bc
bc

bc bc

bc

bc

bc
bc

bc

bc
bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc bc bc
bc

bc

bc

bc

bc

bc bc
bc

bc bc bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc bc

bc

bc
bc
bc
bc bc
bc
bc
bc bc

bc

bc bc bc

bc
bc bc bc

bc
bc bc

bc

bc

bc

bc bc bc
bc

bc
bc bc
bc
bc bc

bc

bc bc bc

ut

ut

ut
ut ut ut

ut ut

b

b

b

b b b b b
b b b b b b b b b b b b b b b brs rs rs rs rs rs rs rs rs rs rs rs rs

ld

ld ld
+ +× ×

rs Dopler × Graph ut Dell1 b Dell2 + Web ld CC-L2 bc EShop

Figure 7.3: Response time measurements.

Table 7.2: Decision models used for evaluation.

Model #q #c #r #literals #clauses

Dopler 14 48 8 51 274
Graph 29 70 24 70 163
Dell1 28 147 103 137 2,127
Dell2 24 147 23 142 2,540
Web 42 113 31 113 253

CC-L2 59 137 20 135 257
EShop 286 703 147 703 1,440

see ample opportunities for improving even this performance which will be explored in
future work.

7.1.3 Memory Consumption

As mentioned in section 7.1.2, simulation results are cached. In particular, each result
of a SelectionGain simulation for each choice is cached. Therefore the cache grows
linearly with the number of choices in the model, with one reference to the choice and
one long containing the gain value.

7.2 Living with Inconsistencies Results

To assess the differences of isolation strategies, we evaluated them on our case studies
given in Table 7.1 Key characteristics of those models are repeated in Table 7.2 like the

65

7. EVALUATION

number of questions (#q), the number of choices (#c) in the model, and the number
of relations (#r) between questions in the model. In addition the number of literals
and clauses needed after the transformation into CNF are stated.

7.2.1 Objectives and Questions

The objectives of the evaluation of living with inconsistencies are to investigate the
effects of different isolation strategies on user guidance in decision-making scenarios.
Specific questions we answer, in accordance with our goals from Table 4.1 regarding
goals O2, C3, S2, G1 and G2, are:

1. What is the difference among the isolation approaches in terms of incomplete
reasoning (missing guidance)?

2. What is the difference among the isolation approaches in terms of incorrect rea-
soning (faulty guidance)?

3. How many questions have to be revisited using the different approaches?

4. How are the approaches handling multiple inconsistencies at the same time?

5. How do the different isolation approaches for tolerating inconsistencies in SAT-
based reasoning scale?

7.2.2 Execution

As mentioned in section 5.3.3 in order to be able to evaluate the isolation approaches
with respect to our objectives, we need to know how an inconsistency is going to be
fixed. For that purpose we generated one thousand valid configurations for each model
(without any inconsistencies), to have a statistical significant sample size. In each con-
figuration we injected up to three defects, for the purpose of getting an idea how the
isolation strategies are effected when multiple defects are present three were sufficient
because more defects are treated in the same manner. We seeded the defects by ran-
domly changing decisions of each configuration to cause inconsistencies and treating
the original decisions as the fixes. We then simulated the decision-making involved.
Since each configuration contained defects, the decision-making eventually encountered
an inconsistency. Starting at this point the simulation was continued using the different
isolation approaches described in Section 5.3.3, while the reasoning data was collected
for each simulation. The approach works with defects injected at any stage from the
very beginning to the end. However, for meaningful observations on completeness and
correctness it is not useful to inject defects at the beginning or end due to the following
reasons: i) assuring that uninvolved assumptions are made before the inconsistency
detection, in order to reveal differences between the isolation approaches and ii) po-
tentially leaving assumptions to be made left after the isolation, in order to be able
to measure the impact of the different isolation approaches onto the reasoning with
sufficient data points. This is why we injected defects in the range [0.2 ∗#q, 0.8 ∗#q].

66

7.2 Living with Inconsistencies Results

To put our results concerning incomplete and incorrect reasoning into perspective,
we also calculated the hypothetical best and worst cases. The worst case is that no
SAT-based automation is available while tolerating inconsistencies (i. e., because it fails
due to UNSAT and no strategy is in place for isolation). This implies that the worst
case is about answering each question without any reasoning in place that helps guide
the user. The ideal case is to isolate the defects only. We, of course, knew for each
configuration where the defects were, since we seeded them. Thus, we can think of our
knowledge as the optimal isolation strategy (although it should be clear that in a non-
experimental setting this extra information would not be available and the ideal is not
computable). Having the ideal available is useful for understanding how far away the
various isolation strategies are from the optimum. As was mentioned above, Disregard
All, Skip, and HUMUS compute unique isolation solutions while MaxSAT typically
computes a non-deterministic solution out of several alternatives. To account for the
randomness of the MaxSAT isolation we thus investigated it from its normal case (the
random selection of a solution) as well as from its worst case (the solution does not
isolate the defects and thus causes the maximum harm in terms of incorrect reasoning).

The results present the comparison of the different isolation strategies with the
ideal isolation simulation data starting at the point during the decision-making process
the first inconsistency was discovered. Looking at our example from Table 5.1 this
would mean starting the comparison at the fifth question and ignoring literals belonging
to questions already answered (the grayed out areas in the table). For instance to
compute the incomplete reasoning data, we counted the number of literals remaining
(no assumptions were derived for them) after each question answered, excluding literals
belonging to already answered questions. To compute the incorrect reasoning data we
counted the number of assumptions made different from the ones of the ideal simulation
data, again excluding literals belonging to already answered questions. To compute the
revisitation sizes the number of assumptions isolated were counted for each approach.
And last but not least the needed isolation times were measured during the simulations.

7.2.3 Results

To get an idea what the raw evaluation data looks like, Figure 7.4 shows absolute results
of three individual runs to assess incomplete reasoning with the HUMUS isolation
strategy for the Dell1 model. On the x-axis the number of questions answered is shown,
while on the y-axis the number of unassigned literals remaining is depicted. While these
individual runs look quite different, their characteristics are basically the same, which
is reflected in the overall results. The meaning of the top curve for example is that
the inconsistency was detected after question 16 was answered, at this point after the
HUMUS isolation took place there were 103 unassigned literals left either belonging to
the remaining 12 questions that were not yet answered nor looked at. After answering
question number 17 through reasoning the number of unassigned literals was reduced
to 41 and so on.

For calculating the overall results covering all models, these individual runs were
normalized on the x-axis between the question where the inconsistency was detected

67

7. EVALUATION

of questions answered

#
u
n

a
ss

ig
n

ed
li
te

ra
ls

0
10
20
30
40
50
60
70
80
90

100
110

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

*

* * *

* * * * * *
* * * * * * * * * * * * * * * *

|
|

| | |

|

| | | |

|
| | | | | | | |

×

× × ×

× × × × × × × ×

×

Figure 7.4: Incomplete reasoning progression runs with HUMUS isolation strategy for
the Dell1 model.

(0%) and the number of remaining questions in the model (100%) that need to tolerate
the inconsistency. The y-axis values were normalized between the number of literals
representing all the choices of the questions left at the time the inconsistency was
detected (100% equal to no reasoning) and zero literals (0%). For example, the top
curve from Figure 7.4, the point questions answered 17 and unassigned literals 41 will
get normalized between 16 questions answered (0%) and 28 questions answered (100%)
resulting in a x-value of ∼ 8.3%, the 41 unassigned literals will get normalized between
0 unassigned literals (0%) and 105 unassigned literals (100%), from the no reasoning
simulation run, resulting in a y-value of ∼ 39.05%. Based on such normalized runs the
averages shown in Figures 7.5 and 7.6 were calculated. Due to the very large number
of configurations investigates, the averages have little variation and combined form a
perfect line.

7.2.3.1 Incomplete Reasoning (Single Defect)

In Figure 7.5 the average results of all configurations evaluated for incomplete reasoning
are shown (objective 7.2.1-1). The 95% confidence intervals are not shown to avoid
further clutter, they are in the range of 0% up to 3.14% for all data points. Due to the
fact that we only evaluate incomplete reasoning on questions not yet answered by the
user, even with no reasoning 0% incomplete reasoning can be reached at the end when
no questions are left. On the other hand even with knowledge that normally would not
be available (ideal case) for about 30% of the remaining literals no assumptions can be
derived at the time of the inconsistency detection. The results correspond to the general
discussion beforehand in Section 5.3.4.1 but also hold some surprises. The Disregard
All strategy which we expected to be the worst-case is in fact a good alternative to no
reasoning at all and not just because it enables automations. The HUMUS isolation
strategy on average only starts out with about 10% more incompleteness than the

68

7.2 Living with Inconsistencies Results

% progression from inconsistency detection to answering every question

%
in

co
m

p
le

te
re

a
so

n
in

g

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

No Reasoning Skip MaxSAT Worst Case MaxSAT Disregard All HUMUS Ideal

Figure 7.5: Incomplete reasoning progression results combining all case study systems.

MaxSAT strategy and quickly closes the gap to the MaxSAT strategy (to the worst case
MaxSAT at ∼10% and the random MaxSAT at ∼45% of the remaining configuration
process). Overall it seems that the investigated models contain significant overlapping
constraints resulting in a more complete reasoning than expected.

7.2.3.2 Incorrect Reasoning (Single Defect)

In Figure 7.6 the average results of all configurations evaluated for incorrect reasoning
are shown (objective 7.2.1-2). Again the 95% confidence intervals are not shown to
avoid further clutter, they are in the range of 0% up to 0.36% for all data points. The
results for incorrect reasoning are also quite interesting. Overall the amount of incorrect
derived assumptions seems not very high – in the worst case only about 6%. Another
interesting fact is the self correcting ability of the MaxSAT strategy since reasoning
with the defect sometimes leads to its re-detection in form of new inconsistencies due
to the overlapping constraints. Every time such a defect is re-detected, the MaxSAT
strategy has a chance to isolate the defect, increasing its chance over time and resulting
in a rapid decrease in incorrect reasoning. The worst case MaxSAT obviously does not
get that benefit and the Skip strategy also has no chance to eliminate the defect once
it is included in the reasoning process since the defect must be located at an earlier
point in time during the configuration. MaxSAT is thus an interesting alternative to
HUMUS if incorrect reasoning is acceptable temporarily. However, do note that using
MaxSAT in this manner is more equivalent to postponing inconsistencies since the
defect is detected multiple times in form of different, yet related inconsistencies.

69

7. EVALUATION

% progression from inconsistency detection to answering every question

%
in

co
rr

ec
t

re
a
so

n
in

g

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100

Skip MaxSAT Worst Case MaxSAT

Figure 7.6: Incorrect reasoning progression results combining all case study systems.

7.2.3.3 Revisitation (Single Defect)

The results show that the Disregard All isolated about 41% of the literals on average.
The HUMUS isolation strategy (3,45%) on average isolates about twice as many literals
as MaxSAT (1,27%), but less than Skip (3,94%) and the worst case MaxSAT (4,19%).
This can be explained by additional isolations needed (increasing the number of literals
in isolation) in case of additional inconsistencies, which occurred more frequent in the
worst case (objective 7.2.1-3).

7.2.3.4 Multiple Defects

We also conducted simulations with up to three defects (objective 7.2.1-4). To avoid ad-
ditional clutter only the HUMUS and MaxSAT strategies are shown in the figures. As
evident in Figure 7.7 (95% confidence intervals are in the range of 0% up to 1.33% for all
data points) the results for incomplete reasoning look quite the same except that natu-
rally it increases for all strategies, since more defects mean more isolations, the same is
true for revisitation results. However, the results for incorrect reasoning in Figure 7.8
(95% confidence intervals are in the range of 0% up to 3,01% for all data points), in addi-
tion to a slight overall increase, clearly indicate a slower decrease in incorrect reasoning
over time. This effect can be explained by the nature of MaxSAT to only isolate as little
as possible and inconsistencies that involve common correct assumptions. Given our
example of the three incompatible decisions Screen Size12.1′′ , Screen ResolutionXGA

and W ebcamyes, if two of them were injected defects then MaxSAT would always iso-
late the third correct one, until additional decisions conflict with the defects and as a
result solutions with one decision isolated would not work anymore.

70

7.2 Living with Inconsistencies Results

% progression from inconsistency detection to answering every question

%
in

co
m

p
le

te
re

a
so

n
in

g

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

Ideal

No Reasoning

HUMUS (1)

MaxSAT (1)

HUMUS (2)

MaxSAT (2)

HUMUS (3)

MaxSAT (3)

Figure 7.7: Incomplete reasoning progression results combining all case study systems
with multiple defects.

Table 7.3: Scalability test results on artificial SAT problems.

#Contributors 10 100 1,000 10,000 100,000

MaxSAT 1ms 1ms 3ms 86ms ∼6s
HUMUS 1ms 3ms 241ms ∼28s ∼1h

7.2.3.5 Scalability

We also conducted performance tests on an Intel Core 2 Quad Q9550 @2.83 GHz with
4GB RAM, although only one core was used for the time being. The computation time
needed for all models and the different isolation approaches was between 0ms and 1ms
per computation. The evaluated models are not the largest SAT models around, how-
ever in context of this domain they are quite large and we have shown that the approach
scales for our case studies (objective 7.2.1-5). However, further evaluations on artificial
SAT models (Table 7.3) show an exponential growth but acceptable performance for
inconsistencies involving up to 10,000 assumptions. While those artificial SAT mod-
els may not represent the structure of typical decision models well, they represent the
worst case structure for our implementation. Those artificial SAT models consist of a
single clause containing n literals (l1 ∨ l2 ∨ . . . ∨ ln) and then all literals are assumed
to be set to false resulting in an inconsistency because at least one literal has to be set
to true. While this kind of SAT model may seem trivial, our HUMUS implementation
determines all MCSes by searching for all MSSes and taking the complementary set
of each one. As a result the number of MSSes grows linearly (n − 1, where n is the
cardinality of the elements in the clause), but so does the number of elements in each

71

7. EVALUATION

% progression from inconsistency detection to answering every question

%
in

co
rr

ec
t

re
a
so

n
in

g

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100

MaxSAT (1) MaxSAT (2) MaxSAT (3)

Figure 7.8: Incorrect reasoning progression results combining all case study systems with
multiple defects.

MSS. Our current implementation builds a single MSS bottom-up which means there
are n! SAT calls necessary, to determine one MSS.

7.3 Potential of Living with Inconsistencies to Fix Incon-

sistencies

As demonstrated earlier HUMUS is useful for living with inconsistencies. However,
there can be an additional benefit to living with inconsistencies, namely the ability
to automatically fix inconsistencies or reduce the number of fixing possibilities. For
the evaluation we used the models from Table 7.2 and in addition to simulating the
different isolation strategies we calculated the number of possible fixes at the point of
the inconsistency detection and after answering each following question.

7.3.1 Automatically Fixing Inconsistencies

At the time of the failure, three situations are possible:

1. A single fix is already computable when the inconsistency is detected and the
decision that caused the inconsistency is trusted to be correct (fixable at failure).

2. A single fix is not computable when the inconsistency is detected but becomes
computable at some point if follow-on decisions can be trusted (fixable later).

3. A single fix is not computable even at the end, with follow-on decisions trusted.
However, the number of choices are reduced making it easier to fix the defect
(fixable with user input).

72

7.3 Potential of Living with Inconsistencies to Fix Inconsistencies

0
10
20
30
40
50
60
70
80
90

100
%

of
a
ll

in
v
es

ti
g
a
te

d
in

co
n

si
st

en
ci

es

Dopler Graph Dell1 Dell2 Web CC-L2 EShop

fixable with user input fixable later fixable at failure

Figure 7.9: Distribution of fixable situations without additional user interaction.

We can see in Figure 7.9, that 30-96% of defects were fixable at the time the inconsis-
tency was detected (i. e., there is only one option available and fixing it is trivial). The
remaining defects required more user input. However, 4-35% of the remaining defects
were fixable simply by letting the decision-making continue (while the inconsistency
was tolerated) without requiring additional information. Tolerating inconsistencies and
making new decisions, independent of the inconsistency, thus fixes defects automati-
cally in many situations. Even in the cases where defects were not fixed automatically,
the choices for fixing them got reduced considerably during tolerating. This benefit is
discussed next. This demonstrates that the fixing of defect is not trivial in many cases.

7.3.2 Automatically Reducing Choices for Fixing

For the 4-70% of defects in Figure 7.9 that were not fixable at the time the inconsistency
was detected, Figure 7.10 presents the actual number of possible fixes at the time of
the detection and at the end (with their respective confidence intervals of 95%). Three
situations are distinguished here:

1. The number of possible fixes if the HUMUS is computed at the end after all
decisions have been answered (worst case).

2. The number of possible fixes if the HUMUS is computed when the inconsistency
is detected (failure).

3. The number of possible fixes if the HUMUS is computed when the inconsistency
is detected, but further reduced by using follow-on decisions with the assumption
that they can be trusted (with tolerating inconsistencies).

The first situation does not distinguish between decisions made prior to and after the
detection of the inconsistency. Follow-on decisions are not trusted to be correct and

73

7. EVALUATION
#

o
f

po
ss

ib
le

fi
xe

s

100

101

102

103

Dopler Graph Dell1 Dell2 Web CC-L2 EShop

worst case failure with tolerating inconsistencies

Figure 7.10: Overview over the number of possible fixes.

thus there are many choices for fixing the inconsistency. The second situation recognizes
that the defect must be embedded among the decisions made prior to the detection.
This simple knowledge vastly reduces the number of possible fixes. Tolerating the
inconsistency then further improves on this by considering the effect of decisions made
after the detection (i. e., while tolerating inconsistencies) onto the decisions made prior
(the optimal is ’1’). Tolerating inconsistencies thus makes it easier to fix defects. The
improvements observed in Figure 7.10 are more substantial in decision models where
there are the more relations (e. g., Dell1 model). This is easily explained. The more
relations (constraints) there are in a model, the more knowledge can be inferred and
thus the more restricted are the number of possible fixes.

In Figure 7.11 the progression of this improvement is shown relative to the per-
centage of decisions remaining until the end. We see that it is not always necessary to
continue decision-making until the end to get the most out of tolerating inconsistencies.
We observed that at about 50% of the remaining questions answered after the detec-
tion (while tolerating inconsistencies) are enough to achieve 80-95% optimal reasoning
and that every decision made after the detection simplifies the fixing of the defect.
Note that the 0% marker on the x-axis corresponds to the point of the detection and
the 100% marker to the end of decision-making. The y-axis denotes the percentage of
choices reduced for fixing defects compared to the optimum which is equal the number
of choices reduced at the end (once all user input is known). Note that we excluded all
those cases where no more reduction was possible after the detection (this data would
be always at 100% and therefore distort the other results).

7.3.3 Fixing Multiple Defects

We realize that for fixing inconsistencies through tolerating, our assumption that new
decisions can be trusted is not always realistic, especially considering the fact that an
inconsistency may be the result of multiple defects. However, it provides us with results

74

7.4 Implications for Decision-Making

% decision-making progress starting at failure

%
ch

o
ic

e
re

d
u
ct

io
n

fo
r

fi
x

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

ut

ut

ut

ut

ut
ut

ut
ut

ut ut ut ut ut ut ut ut ut ut ut ut ut

ld

ld

ld

ld
ld

ld ld ld ld
ld ld ld ld ld ld ld ld ld ld ld ld

+

+

+

+
+

+
+

+
+ + + + +

+ + + + + + + +

×

×

×
×

× ×
× × × × × × × × × × × × × × ×

rs

rs

rs

rs

rs

rs

rs
rs

rs
rs rs rs rs rs rs rs rs rs rs rs rs

b

b

b

b

b
b

b
b b b b b b b b b b b b b b

bc

bc

bc

bc
bc

bc
bc

bc
bc bc bc bc bc bc bc bc bc bc bc bc bc

rs Dopler × Graph ut Dell1 b Dell2 + Web ld CC-L2 bc EShop

Figure 7.11: Normalized progression of fix reduction.

under optimal conditions and just by remembering the point of failure in combination
with HUMUS, the number of possible fixes can be significantly reduced compared to
searching for a fix at the end of the configuration as shown in Figure 7.10. This always
works even if new decisions cannot be trusted and need additional fixing.

In other words, what this means is that as soon as a second inconsistency is detected
during configuration all assumptions made on how to fix the first inconsistency based on
decisions made between the detection of the first and the second inconsistency need to
be isolated with their decisions, otherwise incorrect reasoning might be used to reduce
the number of fixes. However, as long as not all new decisions are involved in the new
inconsistency, the number of fixes can be reduced through reasoning. We presume that
the effect on incomplete reasoning is bigger than just with tolerating, investigating this
will be part of our future work.

7.4 Implications for Decision-Making

Automatically determining the sequence of questions to reach each possible configura-
tion with answering a minimal amount of questions, unburdens the designer of decision
models from having to think about the sequence. In combination with our vision to
give decision makers the freedom to answer any question at any given time, this allows
decision makers to answer questions in the sequence they want or in the sequence our
approach suggests or even combine both ways.

Concerning the living with inconsistencies, all four strategies are useful to allow
automations to continue working in the presence of inconsistencies. In essence both
MaxSAT and HUMUS are viable options for tolerating inconsistencies although, at least
for this domain, HUMUS appears superior to MaxSAT given that it avoids incorrect

75

7. EVALUATION

reasoning altogether (which we believe often to be worse than incomplete reasoning)
and that its incomplete reasoning and revisitation effort is only briefly worse than that
of MaxSAT. It also allows decision-making tools to visualize all contributing decisions
of an inconsistency, which could help users to make an informed decision on how to fix
an inconsistency, which is in our opinion superior to more or less random suggestions.
It also shows that living with inconsistencies is not only advantageous from a usability
perspective, but can also be helpful in resolving inconsistencies. The approaches overall
also scale well and are suited for usage in an interactive tool.

7.5 First Results on the Feasibility of our Approach in

UML Modeling

One possibility of how to use our approach of minimizing user input in the more general
UML modeling scenario is to treat the resolving of inconsistencies in UML as decision-
making. In which case the fixing of inconsistencies can be seen as answering a question
about how to fix it, with all fixing possibilities as choices to choose from. In order for
our approach to be effective or even matter, we need to know that fixing one inconsis-
tency has an impact, either by causing new inconsistencies or resolving / reducing the
number of choices for resolving other inconsistencies. Another aspect was to find out
if inconsistencies in UML models are structured similar to inconsistencies in decision-
making. Due to the fact that UML constraints are typically evaluated individually, in
contrast to checking the whole system as with SAT solvers, it is our presumption that
an inconsistency detected in one constraint identified by all accessed model elements
is rather more equivalent to a MUS than the HUMUS. So if a model change causes
several inconsistencies at a time we can argue that those inconsistencies not only are
structurally related but also semantically. For that reason we performed a basic ex-
periment to explore if inconsistencies have overlaps in their fixing locations – in other
word are structurally related – so that minimizing user input is an option and in addi-
tion explore the benefits (reduction in fixing locations) of assuming that there exist a
semantic relation between inconsistencies.

Our results are based on a set of four models from industrial partners. Due to
proprietary information we are not allowed to present any specific details of the models.
The model sizes range from 1,200 to 33,000 model elements containing several types
of diagrams like class diagrams, sequence diagrams and state-charts as well as use-case
diagrams. The used design rules check generic aspects of the underlying meta model
such as the definition of messages and transitions as operations in the corresponding
class of the class diagram, as well as the direction of the associations in the class diagram
regarding the messages of the sequence diagram, and if the connected classifiers of the
association ends are included in the namespace of the association. These rules are
derived from larger rules used by these industrial partners (see [66] for a complete list).

The results are based on the analysis of the accessed model elements and their
properties, using Egyed’s approach [5]. Each evaluation of a design rule inspects various
properties of different model elements and we call a single element of this set a fixing

76

7.5 First Results on the Feasibility of our Approach in UML Modeling

Table 7.4: Overview of analyzed UML models.

Model #Elements #Inconsistencies #Overlapping %

A 1,282 36 29 80.5
B 2,809 365 363 99.5
C 16,255 489 487 99.6
D 33,347 1,271 1,246 98.0

Figure 7.12: Fixing locations for three UML Inconsistencies.

location (Egyed refers to them as scope elements in [5]). An evaluated design rule
is either consistent or inconsistent. In our results only inconsistent design rules are
considered. The explicit side effects to other design rules, consistent ones included,
are disregarded at this time because no fixing actions were calculated, although of
importance for future work. Our focus at this time was solely on overlapping fixing
locations, the basis for all possible fixing actions.

Table 7.4 provides some background about the models used for our evaluation. It
shows the number of elements, how many inconsistencies were detected, how many of
these inconsistencies have at least one fixing location in common with another inconsis-
tency, and the percentage of such overlaps in inconsistencies. These results in Table 7.4
indicate that most of the inconsistencies found in these real world models have common
fixing locations and are at least structurally related and that our minimizing user input
approach could work also in this domain.

To measure the impact of knowing that inconsistencies are also semantically related,
a short illustration is given next. Figure 7.12 shows fixing locations (dots, triangle, and
pentagons) belonging to three different UML inconsistencies (ellipses marked I1, I2,
and I3). Each inconsistency has a set of fixing locations and their overlap is defined
by the intersection of those sets. Applying this simple set operator, depending on the
knowledge which inconsistencies should be fixed or not, the fixing locations to start out
with can be derived easily. For instance if inconsistencies I2 and I3 should be resolved
but not I1, the fixing locations to start out with are represented by the pentagons in
Figure 7.12.

We conducted a detailed analysis of the overlapping inconsistencies for each model,
where we counted the number of occurrences of different sized overlaps between in-

77

7. EVALUATION

A

0

5

10

15

a
v
e
ra

g
e

#
o

f
fi

x
in

g
lo

c
a

ti
o

n
s

maximum overlap
2 3 4 5 6

B

0

5

10

15

a
v
e
ra

g
e

#
o

f
fi

x
in

g
lo

c
a

ti
o

n
s

maximum overlap
2 3 4 5 6

C

0

5

10

15

a
v
e
ra

g
e

#
o

f
fi

x
in

g
lo

c
a

ti
o

n
s

maximum overlap
2 3 4 5 6

D

0

5

10

15

a
v
e
ra

g
e

#
o

f
fi

x
in

g
lo

c
a

ti
o

n
s

maximum overlap
2 3 4 5 6

individually any 2 any 3 any 4 any 5 all 6

Figure 7.13: Reduction of fixing locations based on overlap size.

consistencies. For instance, counting these areas in Figure 7.12 would result in two
occurrences of a size two overlap ({(I1∩ I2)\ (I1∩ I2∩ I3), (I2∩ I3)\ (I1∩ I2∩ I3)}) and
one occurrence of a size three overlap ({I1 ∩ I2 ∩ I3}). The size of an overlap is deter-
mined by the number of inconsistencies contributing to an overlapping area. Although
the percentage of overlaps was very high in the analyzed models (see Table 7.4), the
composition clearly showed that most of the overlaps were of size two, especially with
bigger models. These results thus answer our first question of how often interrelated
inconsistencies in real world examples exist.

Having established that overlaps among inconsistencies are common, in the following
we will try to answer the second question of how many choices for fixing an inconsis-
tency can be eliminated by considering the effects of interrelated inconsistencies. We
will try to answer this question indirectly, again with the help of fixing locations since
choices for fixing an inconsistency are based on fixing locations. By focusing on fixing
locations, we try to avoid any bias from different fix generation methods – particu-
larly because at present state-of-the-art is only able to compute fixing locations that
cause inconsistencies completely but not necessary all locations affected by fixes as this
requires human intervention [17].

Figure 7.13 shows the average number of common fixing locations for the different
overlap groups. Each group has several bars indicating the impact on the number of
fixing locations by considering additional inconsistencies of the overlap. For overlaps
of size two, there are two bars: the first accounting for the average number of fixing

78

7.5 First Results on the Feasibility of our Approach in UML Modeling

locations if both inconsistencies are considered separately (no overlap effect). The
second bar accounting for the average number of fixing locations if only the overlap
among these two inconsistencies is considered. We thus see the effect of no overlap
vs. pairwise overlap next to each other. The same is valid for overlaps of bigger
sizes though additional bars are used to indicate additional overlaps. For example, the
fixing locations of three overlapping inconsistencies can be viewed individually (first
bar), pairwise as in any two overlapping inconsistencies out of the three (second bar),
and altogether (third bar). This is simple to calculate. For example, if we wanted to
calculate these results for Figure 7.12, they would be the following:

• Overlaps size two: the first bar would be the result of Average(| I1 |, | I2 |, | I3 |),
the second bar the result of Average(| I1 ∩ I2 |, | I1 ∩ I3 |, | I2 ∩ I3 |).

• Overlaps size three: since the same inconsistencies are involved in the overlap size
three the first two bars would be the same, the third however would be the result
of Average(| I1 ∩ I2 ∩ I3 |).

These diagrams show consistently that the number of fixing locations is approximately
reduced by half considering overlaps among two inconsistencies, but it also shows that
this effect diminishes in larger groups – the limited subsequent effect may be due to
the small group of inconsistencies considered.

In summary, we observe that assuming a semantic relation between inconsistencies
significantly reduces the number of fixing locations to consider. In all four models, we
found that a assuming a semantic relation between two inconsistencies already reduces
the set of possible fixing locations by half. By reducing the basis (the locations) on
which fixing actions are being calculated, the number of actual fixing actions may even
be reduced more drastically. For further evaluation it is necessary to include more
design rules, perhaps also considering application or domain specific design rules as
they are likely to further reduce the set of possible fixing locations. What we have
shown here is that there is a strong benefit in understanding the semantic relations to
reduce the complexity of fixing inconsistencies.

79

7. EVALUATION

80

Chapter 8

Related Work

“ A man should look for what is,

and not for what he thinks should

be. ”
– Albert Einstein

In general, there are many areas of research that aim at optimizing problems. Nonethe-
less, the problem we are trying to solve (i. e., optimizing the sequence of questions, living
with inconsistencies), bears familiarities with a range of other areas of research. Such
areas are, for example, decision support systems, dialog design, model checking, expert
systems, other reasoning techniques, operations research or even Bayesian networks.
The similarities and differences between our problem and approach and these areas of
research are discussed next.

8.1 Other Reasoning Techniques

While our work primarily focused on Boolean satisfiability problems, there of course
exist a range of other reasoning techniques with their own advantages and disadvan-
tages. We will only discuss a few of these techniques in detail because either some
aspects are similar to what we did or it would be possible to do them at all.

8.1.1 Constraint Satisfaction Problems

A decision model could be easily formulated as a constraint satisfaction problem [22]
(CSP), in essence they are already constraint satisfaction problems that we transformed
into SAT problems, which are a subset of constraint satisfaction problems. Generally
speaking CSP is often used for model checking. However, the purpose of model checking
is to find out whether there exists at least one valid configuration that satisfies the given
questions, choices, and relations. In other words, a model checker would ensure that
the model is valid. Our work presumes a valid model. A creator certainly validates
such models and may choose to use a model checker for that purpose. One might argue

81

8. RELATED WORK

that, internally, a model checker explores the many different question and choices (much
like a human would) and model checkers are smart enough to optimize this process.
For example, the sequence of variables plays an important role in such approaches.
Heuristics like for instance minimum remaining values (MRV) [22] or constraint ordering
heuristic (COH) [67] are used to speed up finding or rejecting variable assignments.
Since finding valid configurations is not the focus of our work and those heuristics are
designed specifically for this purpose they are not useful to us. It is also important to
point out that model checkers are used to analyze the model until they find an example
or counter example. Our approach is not interested in a just single example (and / or
solution).

Of course CSP solvers are not only used for model checking, they are already being
used to certain degrees in configuration scenarios. For example, to ensure the validity
of models and support users in configuring product lines [41, 68]. This usage is reflected
by users in our simulations ignoring the proposed sequence. However, to our knowledge
no reasoning concerning determining the sequence of questions was used until now, also
in addition the focus on living with inconsistencies is new.

8.1.2 Binary Decision Diagrams

Binary Decision Diagrams [69, 70] (BDD) are data structures used to represent Boolean
functions. Directed acyclic graph structures are used to represent the relations between
Boolean variables in a compressed way and can be used very efficiently for solving
Boolean functions because no decompression is needed. For that purpose their solving
speed largely depends on the variable ordering, not that different from model checking in
general. Although there exist heuristics to determine a good variable order, the problem
of doing so is NP-hard and not finding a good order might result in exponentially large
graphs. SAT and BDDs represent the same entity [71], due to the fact that decision
models can evolve incrementally and are rather complicated Boolean functions (see
Table 7.2), we chose to favor SAT solvers over BDDs.

8.1.3 Satisfiability Modulo Theories

In addition to SAT problems being a subset of CSP problems the Satisfiability Modulo
Theories [72] (SMT) are also a subset. SMT problems can be seen as an extension
to SAT problems where some of the Boolean literals are the replaced by predicates,
essentially functions, that have a Boolean result. Until we did not see the need for such
increments in reasoning in the domain of decision-making. However, when moving to
the general modeling scenario SMT solvers might be necessary.

8.1.4 Paraconsistent Logic

We only just recently became aware of paraconsistent logic [73], and its possible appli-
cation for living with inconsistencies during decision-making. Basically paraconsistent

82

8.2 Decision-support Systems

logic is designed to reason with inconsistencies by dealing with contradictions in a dis-
criminating way. Assuming that it could work the biggest disadvantage would be that
existing automations for decision-making that are mostly SAT-based would have to be
adapted to a different reasoning technique, with our approach of HUMUS we adapted
SAT-based reasoning to be able to live with inconsistencies without affecting existing
automations.

8.2 Decision-support Systems

Decision support systems [74] assist users during decision making – much like our
approaches aim at assisting the user. The difference is that decision support systems are
domain-specific and optimized to solve specific problems. The purpose of such systems
is to improve the quality of decisions by providing essential pieces of information that
help users to make those decisions. A more general discussion can be found at [58]. In
other words they try to improve the quality whereas we focus on reducing the quantity
or rather living with inconsistencies. Our approach does not contradict the approach
of decision support systems and in fact should they be combined. While our approach
reduces the number of questions a user may have to answer, a decision support system
would then help the user answer these questions more easily. It is conceivable that a
decision support system could be beneficial in improving our approach – i. e., by also
considering the difficulty of answering questions. We have not explored this yet.

8.3 Operational Research

The interdisciplinary field of Operations research shares its goals with ours of finding
optimal sequences [75]. Different algorithms and methods are used to arrive at optimal
or near optimal solutions to complex problems. Operations research is used in many
different domains and uses special algorithms, heuristics models and so on for many
different purposes. Nevertheless to our knowledge no solutions to the specific problem
of ordering questions exist.

8.4 Dialog Design

There also exists a great body of work on dialog design, even work on minimizing the
length of dialogs [76]. The difference being that different unrelated questions can lead
to the dialog goal and that the probabilities of users being able to answer them are
assumed to be known. In this case the optimization is about selecting the smallest set
of questions with the highest probability of success that need to be answered.

83

8. RELATED WORK

8.5 Expert Systems

Expert Systems [77] are used to represent experts in a certain area. The basic expert
system consists of a knowledge base, normally for one problem domain, and an inference
engine. The user provides facts and the expert system provides its expertise based on
the given facts and rules contained in the knowledge base. On the surface there are
similarities to determining an optimal sequence, the creator provides us with facts (in
our case questions and their relations) and we provide the expertise, what decision
to make next to minimize the overall needed user input. However reproducing our
reasoning, for determining the sequence, with rules is not feasible because of the high
amount of rules that would be needed, also inconsistencies would mess with the firing
of rules.

8.6 Bayesian networks

Bayesian networks are used to represent uncertain knowledge in a natural way. With
their help questions about the probabilities of variable assignments in a current envi-
ronment state can be answered [22]. The reason why using Bayesian networks seem like
overkill for our problem is because there are no uncertainties in our scenarios. Every
decision has an exact known effect. Though it would be interesting to approximate the
probability of a choice, it is not a trivial task due to computational scalability problems
when creating such networks [22].

84

Chapter 9

Conclusions and Future Work

“ Never put off till tomorrow what

you can do the day after tomor-

row. ”
– Mark Twain

In this final chapter we will summarize our work in Section 9.1, recap the contributions
in Section 9.2, discuss the threats to validity of our approaches in detail in Section 9.3,
and finally give an outlook on future work in Section 9.4.

9.1 Summary

In this thesis we presented two distinct approaches for managing and dealing with
inconsistencies during decision-making. One that helps preventing inconsistencies by
giving decision makers the maximum amount of freedom possible, while still providing
meaningful guidance to reach one’s goals faster. The other approach using different
reasoning strategies for living with inconsistencies during decision-making, where one
strategy in particular seems very promising by ensuring that reasoning after an incon-
sistency is encountered remains correct at the cost of completeness.

While the focus of this thesis was primarily on the technologies “behind the cur-
tains”, it also presented one possibility of how to use and visualize these technologies in
a prototype tool. Several evaluation scenarios provided insight into the effectiveness of
our approaches and their respective costs. It was shown that our guidance calculation
with respect to minimizing user input is nearly optimal and fast enough to be used
interactively. Additionally it was also shown that the cost of living with inconsistencies
scales and the level of incompleteness is reasonable and that it can even have a positive
impact onto resolving inconsistencies.

85

9. CONCLUSIONS AND FUTURE WORK

9.2 Contributions

In general, this thesis contributed to the research area of decision-making and areas
that involve decision-making. The key contributions of this thesis are:

(i) A unique perspective on the problems currently encountered during decision-
making combined with a vision and approach, that may inspire other researchers
to think about the needs of the most important resource in software engineering
namely the software engineer. The most important need being the freedom to
make decisions and resolve inconsistencies the way the engineer prefers to. Not
the other way around, where the tools need them to make decisions in a certain
sequence and need them to fix inconsistencies right away (cf. Chapters 3, 4, and
5).

(ii) An approach that allows correct reasoning with SAT-Solvers in the presence of
inconsistencies at the expense of marginally more incomplete reasoning, thus also
allowing any existing automations to work correctly in the presence of inconsis-
tencies without adaptions needed (cf. Chapter 5).

(iii) An approach on how to determine the shortest path through a series of related
questions to any possible configuration, without knowing in advance which con-
figuration it is going to be (cf. Chapter 5).

(iv) A basis for further research in general modeling scenarios (cf. Chapter 7). We
provided an assessment on the feasibility, based on preliminary results, of applying
these techniques to general modeling scenarios in Section 7.5.

(v) An extensive evaluation of the different aspects and techniques used in our ap-
proach (cf. Chapter 7). The results of the evaluation are valuable for researchers
and practitioners alike, as they show how effective these techniques are and also
provide insights in what is possible.

9.3 Threats to Validity

Similar to the approach and evaluation chapter, this section will be separated into two
parts, each dealing with the threats to validity of an independent approach and its
respective evaluation.

9.3.1 Guidance Calculation

Threats to construct validity imply whether we are optimizing what we want to opti-
mize. The question is whether reducing the number of questions really reduces effort.
Or, do we answer the easy questions only, leaving the hard questions for the decision
maker? At the moment our approach tries to automatically answer as many questions
as possible. Our premise is that any automation is good. Even if our approach were

86

9.3 Threats to Validity

only to answer the easy, less effort questions, it still benefits the decision maker by not
having to answer questions that can be inferred automatically. It is also our opinion
that each decision maker feels differently about how challenging a question is. Thus,
the effort saved depends on the decision maker.

The threat to internal validity is that we do not know the distribution of configura-
tions. We assume configurations to be equally likely, but we know that this is not true.
Still, we also know that data on the likelihood of configurations is not readily available.
Foremost, it takes a large number of configurations to elicit information on statistical
likelihood. With larger models (questions and relations), it is thus less likely that such
data is available. Moreover, even if the data exists, a feedback loop to integrate it with
the model does not necessarily exist. This could be another direction for future work.

Regarding external validity the question is: Are the case studies used for validating
our approach representative? Due to the fact that the case studies are from very differ-
ent domains and include real world examples, we can assume them to be representative.
Moreover, we calibrated our approach only on one of the used case studies and tested
it on all six of them. This implies that our approach was not biased by the calibration
and no overfitting occurred.

Concerning conclusion validity we relied on extensive simulations to show that our
approach is significantly better than a random approach.

9.3.2 Living with Inconsistencies

Threats to construct validity imply whether we are evaluating the different isolation
strategies with the proper criteria. This thesis evaluated the different trade-offs of
common SAT-based strategies to tolerating inconsistencies in the domain of decision-
making based on qualitative criteria (incomplete, incorrect reasoning, and revisitation)
and other criteria (performance). While we acknowledge that these criteria may not
be all there are, they seemed reasonable enough for our needs.

We made no assumption that would invalidate the internal validity of our findings.
As was discussed, our approach applies to guided decision-making and was evaluated
on pre-definable decision models only. Fortunately, many decision models fall into this
category and future work will show whether these strategies are applicable to tolerating
inconsistencies in general.

Regarding external validity the question is: Are the case studies used for validating
our approach representative of decision models in practice? Due to the fact that the case
studies are from very different domains and real world examples, we can assume them
to be representative with regards to composition and observable behavior. It seems
reasonable that in other models relations will be as least as complex as in our case
studies. We exhaustively evaluated the five case study models by randomly injecting
defects and observing the progression with regard to the different isolation approaches.
Due to this exhaustive evaluation and the conclusions, we believe the conclusion validity
to be high.

However, we cannot generalize that our result will apply to other domains where
SAT-based reasoning is used. This thesis thus provides a proof of concept in that

87

9. CONCLUSIONS AND FUTURE WORK

we found domains where tolerating inconsistencies is indeed a viable option. We be-
lieve that many other domains would likewise benefit from observations we made here,
though perhaps not all.

9.4 Future Work

Based on the threats to validity and other shortcomings mentioned throughout the
thesis, we see many opportunities to improve our work further. For the guidance
calculation part interesting areas of research would be to do usability tests with our
configurator tool to see, how well the mix between the freedom to answer any question
and the suggested questions being bigger and changing after each answer is received
in comparison to state-of-the-practice configurator. It would also be interesting to get
actual configuration data to draw conclusions about the actual distribution of configu-
rations in one decision model and to see how much this data helps to further improve
the optimality of our approach or if it even provides any significant improvements. As
for the HUMUS isolation strategy there are a lot of research opportunities. First of all
its use for product line analysis can be explored, also its potential and feasibility for fix-
ing multiple inconsistencies while tolerating them. Besides improving the calculations
behind the approaches to scale even better, the greatest challenge will be to apply our
approaches to other domains and explore if and to which degree our approaches are
useful in more general modeling scenarios.

88

Bibliography

[1] Y. Singh and M. Sood, “Model Driven Architecture: A Perspective,” in Advance
Computing Conference, 2009. IACC 2009. IEEE International, march 2009, pp.
1644 –1652. 1

[2] D. Schmidt, “Guest editor’s introduction: Model-driven engineering,” Computer,
vol. 39, no. 2, pp. 25 – 31, feb. 2006. 1

[3] R. Balzer, “Tolerating Inconsistency,” in 13th ICSE, Austin, Texas, USA, 1991,
pp. 158–165. 2, 10

[4] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein, “xlinkit: A Consis-
tency Checking and Smart Link Generation Service,” ACM Trans. Internet Techn.,
vol. 2, no. 2, pp. 151–185, 2002. 2, 10

[5] A. Egyed, “Instant consistency checking for the UML,” in 28th ICSE, Shanghai,
China, 2006, pp. 381–390. 2, 10, 76, 77

[6] C. W. Johnson and C. Runciman, “Semantic Errors - Diagnosis and Repair,” in
SIGPLAN Symposium on Compiler Construction, 1982, pp. 88–97. 2

[7] S. Alhir, UML in a Nutshell: A Desktop Quick Reference, ser. In a Nutshell.
O’Reilly, 1998. 3

[8] M. Davis, G. Logemann, and D. W. Loveland, “A machine program for theorem-
proving,” Commun. ACM, vol. 5, no. 7, pp. 394–397, 1962. 4, 10, 11

[9] A. Nöhrer and A. Egyed, “Conflict Resolution Strategies during Product Config-
uration,” in Fourth International Workshop on Variability Modelling of Software-
Intensive Systems, Linz, Austria, ser. ICB Research Report, vol. 37. Universität
Duisburg-Essen, 2010, pp. 107–114. 5

[10] A. Nöhrer and A. Egyed, “Utilizing the Relationships Between Inconsistencies
for more Effective Inconsistency Resolution,” in 3rd Workshop on Living with In-
consistencies in Software Development, Colocated with ASE, Antwerp, Belgium.
CEUR Workshop Proceedings Vol-661, 2010, pp. 39–43. 5, 6, 10

89

BIBLIOGRAPHY

[11] A. Nöhrer and A. Egyed, “C2O: A Tool for Guided Decision-making,” in 25th
International Conference on Automated Software Engineering, Antwerp, Belgium,
2010, pp. 363–364. 6, 12

[12] A. Nöhrer, A. Reder, and A. Egyed, “Positive Effects of Utilizing Relationships
between Inconsistencies for more Effective Inconsistency Resolution: NIER Track,”
in ICSE, R. N. Taylor, H. Gall, and N. Medvidovic, Eds. ACM, 2011, pp. 864–867.
6

[13] A. Nöhrer and A. Egyed, “Optimizing User Guidance during Decision-Making,” in
Software Product Lines, 15th International Conference, Munich, Germany, 2011.
6, 16

[14] A. Nöhrer, A. Biere, and A. Egyed, “Managing SAT inconsistencies with HUMUS,”
in VaMoS, U. W. Eisenecker, S. Apel, and S. Gnesi, Eds. ACM, 2012, pp. 83–91.
6

[15] A. Nöhrer, A. Egyed, and A. Biere, “A Comparison of Strategies for Tolerating
Inconsistencies during Decision-Making,” in Software Product Lines, 16th Inter-
national Conference, Salvador, Brazil, 2012. 6

[16] Y. Xiong, Z. Hu, H. Zhao, H. Song, M. Takeichi, and H. Mei, “Supporting Auto-
matic Model Inconsistency Fixing,” in 7th ESEC/FSE, Amsterdam, The Nether-
lands, 2009, pp. 315–324. 10

[17] C. Nentwich, W. Emmerich, and A. Finkelstein, “Consistency Management with
Repair Actions,” in 25th ICSE, Portland, Oregon, USA, 2003, pp. 455–464. 10, 78

[18] A. Egyed, E. Letier, and A. Finkelstein, “Generating and Evaluating Choices for
Fixing Inconsistencies in UML Design Models,” in 23rd ASE, L’Aquila, Italy, 2008,
pp. 99–108. 10

[19] A. Egyed, “Fixing Inconsistencies in UML Design Models,” in 29th ICSE, Min-
neapolis, USA, 2007, pp. 292–301. 10

[20] L. C. Briand, Y. Labiche, and L. O’Sullivan, “Impact Analysis and Change Man-
agement of UML Models,” in 19th International Conference on Software Mainte-
nance, Amsterdam, The Netherlands, 2003, pp. 256–265. 10

[21] M. Sabetzadeh, S. Nejati, S. M. Easterbrook, and M. Chechik, “Global consistency
checking of distributed models with TReMer+,” in 30th ICSE, Leipzig, Germany,
2008, pp. 815–818. 10

[22] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed.
Prentice Hall, 2009. 10, 81, 82, 84

[23] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds., Handbook of Satisfiability,
ser. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, 2009.
11, 49

90

BIBLIOGRAPHY

[24] D. L. Parnas, “On the Design and Development of Program Families,” IEEE Trans.
Software Eng., vol. 2, no. 1, pp. 1–9, 1976. 12

[25] E. W. Dijkstra, “Notes on Structured Programming,” Technological University
Eindhoven, Tech. Rep. 70-WSK-03, Second Edition, 1970. 12

[26] P. Clements and L. Northrop, Software product lines: practices and patterns.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2001. 12

[27] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, “Feature-
Oriented Domain Analysis (FODA) Feasibility Study,” Carnegie-Mellon University
Software Engineering Institute, Tech. Rep., November 1990. 12, 13

[28] G. Campbell, N. Burkhard, J. Facemire, and J. O’Connor, “Synthesis Guide-
book,” Software Productivity Consortium, Hemdon, VA, Tech. Rep. SPC-91122-
MC, 1991. 12, 14

[29] F. van der Linden, K. Schmid, and E. Rommes, Software Product Lines in Action
– The Best Industrial Practice in Product Line Engineering. Springer, 2007. 12

[30] R. Rabiser, “A User-Centered Approach to Product Configuration in Software
Product Line Engineering,” Ph.D. dissertation, Institute for Systems Engineering
and Automation, Christian Doppler Laboratory for Automated Software Engineer-
ing, Johannes Kepler University, Linz, February 2009. 12, 14, 15

[31] T. Asikainen, T. Männistö, and T. Soininen, “Using a Configurator for Modelling
and Configuring Software Product Lines based on Feature Models, Boston, Mas-
sachusetts, USA,” in Workshop on Software Variability Management for Product
Derivation in conjunction with SPLC, 2004. 12

[32] D. Dhungana, P. Grünbacher, and R. Rabiser, “The DOPLER meta-tool for
decision-oriented variability modeling: a multiple case study,” Automated Soft-
ware Engineering, vol. 18, pp. 77–114, 2011. 12, 14, 15, 62

[33] P. Trinidad, D. Benavides, A. R. Cortés, S. Segura, and A. Jimenez, “FAMA
Framework,” in Software Product Lines, 12th International Conference, Limerick,
Ireland, 2008, p. 359. 12, 16

[34] M. Mendonca, M. Branco, and D. Cowan, “S.P.L.O.T.: software product lines
online tools,” in 24th ACM SIGPLAN conference companion on Object oriented
programming systems languages and applications. New York, NY, USA: ACM,
2009, pp. 761–762. 12, 16

[35] G. Botterweck, M. Janota, and D. Schneeweiss, “A Design of a Configurable Fea-
ture Model Configurator,” in VaMoS, ser. ICB Research Report, D. Benavides,
A. Metzger, and U. W. Eisenecker, Eds., vol. 29. Universität Duisburg-Essen,
2009, pp. 165–168. 12, 56

91

BIBLIOGRAPHY

[36] S. Deelstra, M. Sinnema, and J. Bosch, “Product Derivation in Software Product
Families: A Case Study,” Journal of Systems and Software, vol. 74, no. 2, pp.
173–194, 2005. 12

[37] L. Chen, M. A. Babar, and N. Ali, “Variability Management in Software Product
Lines: A Systematic Review,” in SPLC, ser. ACM International Conference Pro-
ceeding Series, D. Muthig and J. D. McGregor, Eds., vol. 446. ACM, 2009, pp.
81–90. 12

[38] M. Sinnema, J. S. van der Ven, and S. Deelstra, “Using Variability Modeling Princi-
ples to Capture Architectural Knowledge,” ACM SIGSOFT Software Engineering
Notes, vol. 31, no. 5, 2006. 12

[39] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and A. Wasowski, “Cool Fea-
tures and Tough Decisions: A Comparison of Variability Modeling Approaches,” in
VaMoS, U. W. Eisenecker, S. Apel, and S. Gnesi, Eds. ACM, 2012, pp. 173–182.
12

[40] K. Czarnecki and U. W. Eisenecker, Generative Programming – Methods, Tools
and Applications. Addison-Wesley, 2000. 13

[41] D. Benavides, P. T. Martín-Arroyo, and A. R. Cortés, “Automated Reasoning
on Feature Models,” in Advanced Information Systems Engineering, 17th Interna-
tional Conference, CAiSE, Porto, Portugal, 2005, pp. 491–503. 13, 82

[42] M. Mendonça, A. Wasowski, and K. Czarnecki, “SAT-based analysis of feature
models is easy,” in Software Product Lines, 13th International Conference, San
Francisco, California, USA, 2009, pp. 231–240. 13, 16

[43] D. Benavides, S. Segura, and A. R. Cortés, “Automated analysis of feature models
20 years later: A literature review,” Information Systems, vol. 35, no. 6, pp. 615–
636, 2010. 13, 14, 16

[44] K. Schmid and I. John, “A Customizable Approach to Full Lifecycle Variability
Management,” Journal of the Science of Computer Programming, Special Issue on
Variability Management, vol. 53, no. 3, pp. 259–284, 2004. 14

[45] D. Dhungana, R. Rabiser, P. Grünbacher, K. Lehner, and C. Federspiel, “DO-
PLER: An Adaptable Tool Suite for Product Line Engineering,” in Software Prod-
uct Lines, 11th International Conference, Kyoto, Japan, 2007, pp. 151–152. 15,
32

[46] D. Dhungana and P. Grünbacher, “Understanding Decision-Oriented Variability
Modelling,” in SPLC (2), S. Thiel and K. Pohl, Eds. Lero Int. Science Centre,
University of Limerick, Ireland, 2008, pp. 233–242. 15

92

BIBLIOGRAPHY

[47] R. Dhungana, “A Model-driven Approach to Flexible and Adaptable Software Vari-
ability Management,” Ph.D. dissertation, Institute for Systems Engineering and
Automation, Christian Doppler Laboratory for Automated Software Engineering,
Johannes Kepler University, Linz, February 2009. 15

[48] N. Siegmund, M. Rosenmüller, C. Kästner, P. G. Giarrusso, S. Apel, and S. S.
Kolesnikov, “Scalable Prediction of Non-functional Properties in Software Product
Lines,” in SPLC, E. S. de Almeida, T. Kishi, C. Schwanninger, I. John, and
K. Schmid, Eds. IEEE, 2011, pp. 160–169. 16

[49] M. L. Rosa, W. M. P. van der Aalst, M. Dumas, and A. H. M. ter Hofstede,
“Questionnaire-based variability modeling for system configuration,” Software and
System Modeling, vol. 8, no. 2, pp. 251–274, 2009. 16

[50] G. S. Tseitin, “On the Complexity of Derivation in Propositional Calculus,” in
Automation of Reasoning 2: Classical Papers on Computational Logic 1967–1970,
J. Siekmann and G. Wrightson, Eds. Springer, 1983, pp. 466–483. 16

[51] J. White, D. C. Schmidt, D. Benavides, P. Trinidad, and A. R. Cortés, “Automated
Diagnosis of Product-Line Configuration Errors in Feature Models,” in Software
Product Lines, 12th International Conference, Limerick, Ireland, 2008, pp. 225–
234. 16, 28

[52] D. Haw, C. A. Goble, and A. L. Rector, “GUIDANCE: Making it Easy for the
USer to be an Expert,” in IDS, 1994, pp. 25–48. 16

[53] R. L. Cobleigh, G. S. Avrunin, and L. A. Clarke, “User guidance for creating precise
and accessible property specifications,” in 14th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, Portland, Oregon, USA, 2006, pp.
208–218. 16

[54] C. van Nimwegen, D. D. Burgos, H. van Oostendorp, and H. Schijf, “The paradox
of the assisted user: guidance can be counterproductive,” in Conference on Human
Factors in Computing Systems, Montréal, Québec, Canada, 2006, pp. 917–926. 16,
33, 38

[55] K. J. Vicente, “Crazy Clocks: Counterintuitive Consequences of "Intelligent" Au-
tomation,” IEEE Intelligent Systems, vol. 16, no. 6, pp. 74–76, 2001. 16, 32

[56] G. A. Miller, “The Magical Number Seven, Plus or Minus Two: Some Limits on
Our Capacity for Processing Information,” The Psychological Review, vol. 63, pp.
81–97, 1956. 16

[57] A. Pleuss, R. Rabiser, and G. Botterweck, “Visualization Techniques for Appli-
cation in Interactive Product Configuration,” in SPLC Workshops, I. Schaefer,
I. John, and K. Schmid, Eds. ACM, 2011, p. 22. 16

93

BIBLIOGRAPHY

[58] G. Marakas, Decision Support Systems in the Twenty-First Century. Prentice
Hall, 1999. 25, 83

[59] A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker, “Intelligent Support for
Interactive Configuration of Mass-Customized Products,” in Engineering of Intel-
ligent Systems, 14th International Conference on Industrial and Engineering Ap-
plications of Artificial Intelligence and Expert Systems, IEA/AIE 2001, Budapest,
Hungary, 2001, pp. 746–756. 28

[60] A. MacLean, R. M. Young, and T. P. Moran, “Design rationale: the argument
behind the artifact,” in SIGCHI conference on Human factors in computing sys-
tems: Wings for the mind, ser. CHI ’89. New York, NY, USA: ACM, 1989, pp.
247–252. 32

[61] A. Biere, “PicoSAT Essentials,” JSAT, vol. 4, no. 2-4, pp. 75–97, 2008. 36

[62] D. L. Berre and A. Parrain, “The Sat4j library, release 2.2,” JSAT, vol. 7, no. 2-3,
pp. 59–6, 2010. 36

[63] M. H. Liffiton and K. A. Sakallah, “Algorithms for Computing Minimal Unsatis-
fiable Subsets of Constraints,” J. Autom. Reason., vol. 40, no. 1, pp. 1–33, 2008.
49, 51

[64] C. M. Li and F. Manyà, “MaxSAT, Hard and Soft Constraints,” in Handbook of
Satisfiability, 2009, pp. 613–631. 49, 50

[65] P. Grünbacher, R. Rabiser, and D. Dhungana, “Product Line Tools are Product
Lines Too: Lessons Learned from Developing a Tool Suite,” in 23rd IEEE/ACM In-
ternational Conference on Automated Software Engineering, L’Aquila, Italy, 2008,
pp. 351–354. 62

[66] A. Egyed, “Automatically Detecting and Tracking Inconsistencies in Software De-
sign Models,” IEEE Transactions on Software Engineering, vol. 99, no. PrePrints,
2010. 76

[67] M. A. Salido, “A non-binary constraint ordering heuristic for constraint satisfaction
problems,” Applied Mathematics and Computation, vol. 198, no. 1, pp. 280–295,
2008. 82

[68] J. Amilhastre, H. Fargier, and P. Marquis, “Consistency restoration and explana-
tions in dynamic CSPs – Application to configuration,” Artificial Intelligence, vol.
135, no. 1–2, pp. 199–234, 2002. 82

[69] R. Drechsler and B. Becker, Binary Decision Diagrams: Theory and Implementa-
tion. Kluwer Academic Publishers, 1998. 82

[70] R. E. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation,”
IEEE Transactions on Computers, vol. 35, pp. 677–691, 1986. 82

94

BIBLIOGRAPHY

[71] S. Reda, R. Drechsler, and A. Orailoglu, “On the relation between SAT and BDDs
for equivalence checking,” in Quality Electronic Design, 2002. Proceedings. Inter-
national Symposium on, 2002, pp. 394–399. 82

[72] C. Barrett, L. de Moura, and A. Stump, “SMT-COMP: Satisfiability Modulo The-
ories Competition,” in Computer Aided Verification, ser. Lecture Notes in Com-
puter Science, K. Etessami and S. Rajamani, Eds. Springer Berlin / Heidelberg,
2005, vol. 3576, pp. 503–516. 82

[73] A. Hunter, “Paraconsistent Logics,” in Handbook of Defeasible Reasoning and Un-
certain Information. Kluwer, 1996, pp. 11–36. 82

[74] J. Wilkenfeld, S. Kraus, K. M. Holley, and M. A. Harris, “GENIE: A decision
support system for crisis negotiations,” Decis. Support Syst., vol. 14, pp. 369–391,
August 1995. 83

[75] H. A. Taha, Operations Research: An Introduction. Pearson/Prentice Hall, 2006.
83

[76] R. B. Inouye, “Minimizing the length of non-mixed initiative dialogs,” in ACL
workshop on Student research, Barcelona, Spain, 2004, pp. 39–43. 83

[77] R. G. D. Giarratano Joseph C., Expert Systems: Principles and Programming
(Fourth Edition), 3rd ed. Course Technology, 2004. 84

[78] U. W. Eisenecker, S. Apel, and S. Gnesi, Eds., Sixth International Workshop on
Variability Modelling of Software-Intensive Systems, Leipzig, Germany, January
25-27, 2012. Proceedings. ACM, 2012.

95

BIBLIOGRAPHY

96

Glossary

BDD Binary Decision Diagrams

CNF Conjunctive Normal Form

CSP Constraint Satisfaction Problem

DOPLER Decision-Oriented Product Line Engineering for effective Reuse

HUMUS High-level Union of Minimal Unsatisfiable Sets

MCS Minimal Correcting Set

MDA Model Driven Architecture

MDD Model Driven Development

MDE Model Driven Engineering

MSS Maximum Satisfiable Set

MUS Minimal Unsatisfiable Set

SAT Problem Boolean Satisfiability Problem

SMT Satisfiability Modulo Theories

SPLE Software product line engineering

UML Unified Modeling Language (http://www.uml.org)

97

GLOSSARY

98

Appendix A

C2O – Configurator 2.0 Manual

A.1 Description

Decision models are widely used in software engineering to describe and restrict decision-
making (e. g., deriving a product from a product-line). Since decisions are typically
interdependent, conflicts during decision-making are inevitably reached when invalid
combinations of decisions are made. Unfortunately, the current state-of-the-art pro-
vides little support for dealing with such conflicts. On the one hand, some conflicts can
be avoided by providing more freedom in which sequence decisions are made (i. e., most
important decisions first). On the other hand, conflicts are unavoidable at times and
living with conflicts may be preferable over forcing the user to fix them right away –
particularly, because fixing conflicts becomes easier the more is known about an user’s
intentions. The C2O (Configurator 2.0) tool is one example how guided decision-making
could look like. The tool allows the user to answer questions in an arbitrary sequence
– with and without the presence of conflicts. While giving users those freedoms, it
still supports and guides them by i) rearranging the sequence of questions according
to their potential to minimize user input, ii) providing guidance to avoid follow-on
conflicts, and iii) supporting users in fixing conflicts at a later time.

A.2 Third Party Libraries

More information on used third party libraries can be found at the following addresses

• prefuse http://www.prefuse.org/

• PicoSAT http://fmv.jku.at/picosat

• SAT4J http://www.sat4j.org

99

http://www.prefuse.org/
http://fmv.jku.at/picosat
http://www.sat4j.org

A. C2O – CONFIGURATOR 2.0 MANUAL

A.3 GUI Explanation

Figure A.1: Overview of the C2O Configurator GUI.

A.3.1 Questions (1)

Significance of Font Size: The bigger the font size, the higher is the potential (gain)
of this question at this moment to lead to the desired configuration via the shortest
path possible, if answered next. This potential is recalculated after every decision
made by the user and adapts automatically.

Green (Black): Decision made by the user

Yellow (Light Grey): Decisions automatically made by the reasoning engine derived
from user decisions

Red (Dark Grey): Decisions which are in conflict with at least one other decision

Orange (Grey): Highlight color for questions that match the search pattern

100

A.3 GUI Explanation

Figure A.2: Searching for questions.

A.3.2 Choice list (2)

Green (White): Choices which can be selected at this time without introducing any
conflicts (or is already selected)

Red (Dark Grey): Choices which will result in a new conflict

Yellow (Light Grey): Choices which will reduce the number of possibilities of how
the current conflicts can be resolved. If the number of possibilities is reduced to
one a conflict can be resolved automatically, and it will be dealt with according
to the settings (Option → Automatically Resolve Conflict)

A.3.3 Buttons

Explanation box (3): If you click the question mark (6) right next to a choice, you
get info about the effect if you select this choice as the answer to the question

Back - Forward (4): Let’s you move forwards and backwards in the history of your
decisions

Undo answer (5): The currently selected choice for this question is undone

Get explanation (6): Displays which effects a selection of this choice would have.

Search (7): You can search for a specific question which will be highlighted

101

A. C2O – CONFIGURATOR 2.0 MANUAL

A.3.4 Menu - File

Figure A.3: File menu.

Reset: Resets the reasoning engine, and let’s you start over

Change Model: List of all available models you can change too

Load Model: Loads a model in the above specified XML format

A.3.5 Menu - Options

Figure A.4: Options menu.

Reasoning

Activate Guidance: Gains will be calculated. The question font size adapts accord-
ing to the calculated potential for leading to the shortest path if answered next

102

A.4 FAQ

Automatically Resolve Conflict: If activated the SAT Solver automatically solves
conflicts if possible. If not activated you will be asked if you want to keep your
original choice or take the proposed choice from the SAT Solver

Change Conflict Isolation Strategy: Adds the possibility to change the Isolation
strategy during the Isolation of a Conflict. The choices are HUMUS, MaxSAT
and Skip in- or excluding implicit trust (trust the last user decision that caused
the conflict). HUMUS basically isolates all contributors and MaxSAT isolates as
few as possible (random), whereas Skip explicitly does not trust the decision that
caused the conflict and skips it.

Change SAT Solver: Adds the possibility to change the SAT solver from PicoSAT to
SAT4j and vice versa, PicoSAT is faster (especially with the HUMUS calculation)
but needs native libraries (which are provided with the download)

Appearance

Hide Irrelevant Questions: Hides (at this time) irrelevant questions, for a better
overview.

Redraw all: Redraws the complete GUI after each change, instead of only changed
parts which is a little bit slower. This is useful because sometimes the size changes
cause artifacts.

Show Gain Tooltip: Adds a mouse-over-effect to each question which displays its
current gain value - Black & White: For presentation or printing purposes the
GUI can be switched to gray scale.

A.4 FAQ

A.4.1 Is the source code publicly available?

For the time being the source code is not publicly available. If you like the tool and
want to use its technologies please contact us directly, so we can work something out.

A.4.2 Can I use other Data Types than String as question answers,
or have multiple choice answers?

The reasoning engine can handle different data types and multiple choices answers,
but this prototype cannot visualize and handle them at this time, also no support for
loading such models is provided at the moment.

A.4.3 Does this technology work with other type of models?

• The conflict detection, explanation, and living with conflicts approach is built on
SAT-solving technology, as a consequence it works with all models that can be
translated into CNF (conjunctive normal form) and used by a SAT-Solver.

103

A. C2O – CONFIGURATOR 2.0 MANUAL

• The guidance heuristics is also implemented for models translatable into CNF.
But the concepts behind it are very general so it should be easy to adapt to other
models as well.

104

Appendix B

Model XML Format

This specifies the preliminary model XML format, used by the C2O Configurator at
the moment not many validations are performed so make sure you get it right.

B.1 Overview

<? xml version="1.0 " encoding ="UTF -8" ?>

<model name =" Example ">

<questions >

...

</ questions >

<relations >

...

</ relations >

</ model >

Each model has to have a <model> element as root where the name of the model is
specified via the "name" attribute. Since some caching is performed and saved on the
hard-drive make sure this name is unique, otherwise switching between models with
the same name might cause strange side effects. This <model> element has two child
elements <questions> and <relations> which are explained next. Questions

<question identifier =" Question 1"

description =" Which Question do you want to answer ?">

<choice name=" Question 2" />

<choice name=" Question 3" />

</ question >

The <questions> element can have any number of child elements. Each must have
a unique "identifier" attribute, and can have have a description containing the whole
question. Each must have at least one element as a child. The <choice> element
represents one possibility of how to answer the question and again must have a "name"

105

B. MODEL XML FORMAT

attribute that has to be unique in the scope of this <question> element.

B.2 Relations

B.2.1 Constraint Relations

Constraint Relations in always must have one source question and at least one target
question. Each <source> and <target> element must have a set attribute "question-
Identifier" that has to correspond to the unique identifier of a defined question.

<constraintRelation >

<source questionIdentifier =" Question 2" />

<targets >

<target questionIdentifier =" Question 4" />

</ targets >

<rule choiceName =" Choice 1">

<allowed choiceName =" Choice 1" />

</ rule >

<rule choiceName =" Choice 2">

<disallowed choiceName =" Choice 1" />

</ rule >

</ constraintRelation >

A Constraint Relation defines a relation where selecting choices for the source ques-
tion constrain the possibilities for selecting choices of the target question. If you have
more than one target question keep in mind that all the specified target questions must
have the same choices.

Besides the source and targets a constrained relation can have rules. At most
one for each choice of the source question. Each element has to have a "choiceName"
attribute identifying a choice of the source question. This element can have either or
child elements but not both, again with a "choiceName" attribute identifying a choice
of the target question.

The semantics of the two rules given in the example are:

• If "Choice 1" of "Question 2" is selected only "Choice 1" is allowed as answer for
"Question 4". The same is true for the other direction, meaning if "Choice 1" of
"Question 4" is selected only "Choice 1" is allowed as answer for "Question 2"

• If "Choice 2" of "Question 2" is selected, every choice but "Choice 1" is allowed as
answer for "Question 4", again if "Choice 1" of "Question 4" is selected any choice
but "Choice 2" is allowed as answer for "Question 2". (this statement would be
even further constrained by the first rule)

The semantics of choices where no rule is explicitly defined is that a combination with
any choice of the target is possible.

B.2.2 Relevancy Relation

Relevancy Relations in always must have one source question and at least one target
question. Each <source> and <target> element must have a set attribute "question-
Identifier" that has to correspond to the unique identifier of a defined question.

106

B.2 Relations

<relevancyRelation >

<source questionIdentifier =" Question 1" />

<targets >

<target questionIdentifier =" Question 2" />

</ targets >

< irrelevantIf choiceName =" Question 3" />

</ relevancyRelation >

A Relevancy Relation defines a relation where selecting choices for the source ques-
tion renders other questions relevant or irrelevant (determines if they need to be an-
swered by the user). This relation can also be used to impose a specific partial sequence
onto the automatic guidance calculation.

Besides the source and targets a relevancy relation can have rules. Those rules are
represented by either a or element, at most one for each choice of the source question.
Again those elements should not be mixed. Each of those elements has to have a
"choiceName" attribute identifying a choice of the source question.

The semantics are:

• If no <relevantIf> or <irrelevantIf> element is defined, every choice of the
source question makes the target questions relevant. This can be used just to
impose a partial sequence onto the automatic guidance calculation.

• If <relevantIf> elements are used each choice identified by these elements will
render the target questions relevant, all other choices will render them irrelevant.

• If <irrelevantIf> elements are used each choice identified by these elements will
render the target questions irrelevant, all other choices will render them relevant.

B.2.3 CNF Relation

A CNF Relation is intended for more complex relations that cannot be expressed with
the other two kinds of relations. You basically can write any CNF (conjunctive normal
form) clause and add it as a relation. No source or targets are required for this type of
relation.

<cnfRelation >

<literal question =" Question 3" choiceName ="Choice 1"

positive ="true" />

<literal question =" Question 3" choiceName ="Choice 2" />

<literal question =" Question 5" choiceName ="Choice 3"

positive ="false " />

</ cnfRelation >

A CNF Relation consists of elements, where each element represents one literal
in a CNF clause, the attribute "question" and "choiceName" specify the answer that
is internally represented by a literal, the attribute "positive" indicates whether the
literal should be added as is (literal, positive="true" which can be omitted) or negated
(¬literal, positive="false").

The semantics of this example are:
Question3(Choice1) ∨Question3(Choice2) ∨ ¬Question5(Choice3)

107

B. MODEL XML FORMAT

B.3 Examples

B.3.1 Example.xml

<?xml version="1.0 " encoding ="UTF -8" ?>

<model name=" Example_XML ">

<questions >

<question identifier =" Question 1" description =" Which

Question do you want to answer ?" >

<choice name =" Question 2" />

<choice name =" Question 3" />

</ question >

<question identifier =" Question 2">

<choice name =" Choice 1" />

<choice name =" Choice 2" />

</ question >

<question identifier =" Question 3">

<choice name =" Choice 1" />

<choice name =" Choice 2" />

<choice name =" Choice 3" />

</ question >

<question identifier =" Question 4">

<choice name =" Choice 1" />

<choice name =" Choice 2" />

<choice name =" Choice 3" />

</ question >

<question identifier =" Question 5">

<choice name =" Choice 3" />

<choice name =" Choice 4" />

</ question >

</ questions >

<relations >

<relevancyRelation >

<source questionIdentifier =" Question 1" />

<targets >

<target questionIdentifier =" Question 2" />

</ targets >

< irrelevantIf choiceName =" Question 3" />

</ relevancyRelation >

< relevancyRelation >

<source questionIdentifier =" Question 1" />

<targets >

<target questionIdentifier =" Question 3" />

</ targets >

<relevantIf choiceName =" Question 3" />

</ relevancyRelation >

<constraintRelation >

<source questionIdentifier =" Question 2" />

<targets >

<target questionIdentifier =" Question 4" />

</ targets >

<rule choiceName =" Choice 1">

<allowed choiceName =" Choice 1" />

</rule >

<rule choiceName =" Choice 2">

<disallowed choiceName =" Choice 1" />

</rule >

</ constraintRelation >

<cnfRelation >

<literal question =" Question 3" choiceName =" Choice 1" positive =

"true" />

108

B.3 Examples

<literal question =" Question 3" choiceName =" Choice 2" />

<literal question =" Question 5" choiceName =" Choice 3" positive =

" false " />

</ cnfRelation >

</ relations >

</ model >

B.3.2 Car.xml

<? xml version="1.0 " encoding ="UTF -8" ?>

<model name =" CarModel ">

<questions >

<question identifier =" edition " description =" edition ">

<choice name=" sport " />

<choice name=" none" />

<choice name=" family " />

</ question >

<question identifier ="color " description ="color ">

<choice name=" red " />

<choice name=" black " />

<choice name=" green " />

<choice name=" blue" />

<choice name=" orange " />

</ question >

<question identifier ="tires " description ="tires ">

<choice name=" low profile " />

<choice name=" normal " />

<choice name="fuel - efficient " />

</ question >

<question identifier ="type" description =" type">

<choice name=" coupe " />

<choice name=" station wagon " />

<choice name=" cabriolet " />

</ question >

<question identifier ="rims" description =" rims">

<choice name=" steel " />

<choice name="light - alloy " />

</ question >

<question identifier =" horsepower " description =" horsepower ">

<choice name="50" />

<choice name="75" />

<choice name=" 100 " />

<choice name=" 150 " />

</ question >

<question identifier =" extras " description =" extras ">

<choice name=" none" />

<choice name=" roof rack" />

</ question >

</ questions >

<relations >

<constraintRelation >

<source questionIdentifier =" type" />

<targets >

<target questionIdentifier =" horsepower " />

</ targets >

<rule />

<rule choiceName =" cabriolet ">

<disallowed choiceName ="50" />

<disallowed choiceName ="75" />

</ rule >

<rule choiceName =" station wagon ">

<disallowed choiceName ="50" />

109

B. MODEL XML FORMAT

</rule >

</ constraintRelation >

< constraintRelation >

<source questionIdentifier =" extras " />

<targets >

<target questionIdentifier =" type" />

</ targets >

<rule choiceName =" roof rack">

<disallowed choiceName =" cabriolet " />

<disallowed choiceName =" coupe " />

</rule >

</ constraintRelation >

< constraintRelation >

<source questionIdentifier ="rims " />

<targets >

<target questionIdentifier =" tires " />

</ targets >

<rule choiceName =" steel ">

<disallowed choiceName ="low profile " />

</rule >

<rule choiceName ="light - alloy ">

<disallowed choiceName =" normal " />

</rule >

</ constraintRelation >

< constraintRelation >

<source questionIdentifier ="type " />

<targets >

<target questionIdentifier =" rims" />

</ targets >

<rule />

<rule choiceName =" cabriolet ">

<disallowed choiceName =" steel " />

</rule >

</ constraintRelation >

< constraintRelation >

<source questionIdentifier ="type " />

<targets >

<target questionIdentifier =" color " />

</ targets >

<rule choiceName =" cabriolet ">

<disallowed choiceName ="blue " />

<disallowed choiceName =" black " />

</rule >

<rule choiceName =" coupe ">

<disallowed choiceName =" orange " />

<disallowed choiceName ="blue " />

</rule >

<rule choiceName =" station wagon ">

<disallowed choiceName =" orange " />

<disallowed choiceName ="red " />

<disallowed choiceName =" green " />

</rule >

</ constraintRelation >

< constraintRelation >

<source questionIdentifier =" edition " />

<targets >

<target questionIdentifier =" type" />

</ targets >

<rule />

<rule choiceName =" family ">

<disallowed choiceName =" cabriolet " />

<disallowed choiceName =" coupe " />

110

B.3 Examples

</ rule >

<rule choiceName ="sport ">

<disallowed choiceName =" coupe " />

<disallowed choiceName =" station wagon " />

</ rule >

</ constraintRelation >

</ relations >

</ model >

111

B. MODEL XML FORMAT

112

Alexander Nöhrer

Personal Data

Place and Date of Birth: Eisenstadt, Austria — June 19, 1982
Religion: Catholic
Address: Berggasse 9, 7072 Mörbisch/See

email: alexander.noehrer@gmail.com

Work Experience

Current Project Assistant at Johannes Kepler University Linz

Mar 2009 Institute of Systems Engineering and Automation

http://www.jku.at/sea/

Researching ways to improve user guidance primarily in decision-making scenarios
for my PhD thesis. Teaching ”Presenation and Working techniques” course.

Oct 2008 Software Engineer at Austrian Research Center Seibersdorf

Jul 2008 Radio-Frequency Engineering Department

http://rf.seibersdorf-laboratories.at/

Customer support and adding new hardware drivers for the measurement software
”Field Nose”.

Oct 2007 Software Engineer at Austrian Research Center Seibersdorf

Jul 2007 Radio-Frequency Engineering Department

http://rf.seibersdorf-laboratories.at/

Customer support and minor bugs fixes for the measurement software ”Field Nose”.

Oct 2006 Software Engineer at Austrian Research Center Seibersdorf

Jul 2005 Radio-Frequency Engineering Department

http://rf.seibersdorf-laboratories.at/

Redesigned the measurement logic of the measurement software ”Field Nose” as part
of my Master thesis (measurement process, hardware driver interface, data storage).

Jun 2005 Tutor at University of Applied Sciences Upper Austria

Oct 2004 Media Technology and Design

http://www.fh-ooe.at/

Tutor for Java programming course, providing a questions and answers tutorium for
students and correcting their exercises.

Oct 2004 Software Engineer at Austrian Research Center Seibersdorf

Jul 2004 Radio-Frequency Engineering Department

http://rf.seibersdorf-laboratories.at/

Improved the measurement software ”Field Nose” including several major bug fixes.
Developed a noise reducing algorithm for the measurement results.

Oct 2003 Internship at Austrian Research Center Seibersdorf

Jul 2003 Radio-Frequency Engineering Department

http://rf.seibersdorf-laboratories.at/

Created the GUI of the measurement software ”Field Nose” with Java Swing.

mailto:alexander.noehrer@gmail.com
http://www.jku.at/sea/
http://rf.seibersdorf-laboratories.at/
http://rf.seibersdorf-laboratories.at/
http://rf.seibersdorf-laboratories.at/
http://www.fh-ooe.at/
http://rf.seibersdorf-laboratories.at/
http://rf.seibersdorf-laboratories.at/

Education

Mar 2012 PhD in Software Engineering
Oct 2006 Johannes Kepler University, Linz

http://www.jku.at/

Jul 2006 Master of Science in Software Engineering (Dipl.-Ing.(FH))
Oct 2002 University of Applied Sciences Upper Austria, Hagenberg

http://www.fh-ooe.at/

Besides providing a founded education in computer science, extensive theoretical and
practical training in Project Engineering (agile and classical), Social Competence
(interpersonal skills, presentation techniques, teamwork, rules for successful commu-
nication, conflict and stress management), and Business Basics was supplied.

Jun 2000 A Levels
Oct 1992 BRG Eisenstadt

http://www.gymnasium-eisenstadt.at/

Technical Skills and Competencies

Basics
Expert

Operating Windows (3.11, 95, 98, 2000, XP, Vista, 7) • • • • •

Systems Linux (Gentoo, Debian, SUSE) • • • • •

MacOS • • • • •

Programming Java • • • • •

Languages C, C++, Delphi, Pascal • • • • •

C#, VB.net • • • • •

VB 6.0, Assembler • • • • •

Scripting Shell-Scripts, ANT • • • • •

Languages JavaScript, ActionScript, PHP, Nullsoft Installer Scripts • • • • •

Frameworks Java Swing, Java Beans, SWT, RMI, JNI • • • • •

Spring, JUnit, C Stdio, C++ STL • • • • •

JSP, ASP.net, GWT, Restlet, EJB, MPI • • • • •

Concepts Object-oriented programming • • • • •

Component-oriented programming • • • • •

Procedural programming • • • • •

Introspection, Concurrency, Sockets • • • • •

Design Patterns, Anti Patterns • • • • •

Functional programming • • • • •

Databases HSQLDB • • • • •

Oracle9i, mySQL • • • • •

Other SAT Solvers, XML(DTD, XPath, XSLT, XML Schema) • • • • •

SQL, PL/SQL, Product lines, Feature Models • • • • •

UML, ER-Diagrams, Regular Expressions, Cryptography • • • • •

Tools Eclipse, CVS, SVN • • • • •

LATEX(MikTeX, LyX, TeXnicCenter), JavaDoc • • • • •

Visual Studio, MS Office, Visio, OpenOffice, DoxyGen • • • • •

http://www.jku.at/
http://www.fh-ooe.at/
http://www.gymnasium-eisenstadt.at/

Languages

German: Mothertongue
English: Fluent (spoken and written)
Russian: Basic Knowledge

Interests

Simplifying User Interface Design, Artificial Intelligence, Cryptography, Adapting tools to
users’ needs by not needing users to adapt to the tools’ needs

Publications

[8] A. Nöhrer, A. Egyed, and A. Biere. A Comparison of Strategies for Tolerating In-
consistencies during Decision-Making. In Software Product Lines, 16th International

Conference, Salvador, Brazil, 2012
[7] A. Nöhrer, A. Biere, and A. Egyed. Managing SAT inconsistencies with HUMUS. In

U. W. Eisenecker, S. Apel, and S. Gnesi, editors, VaMoS, pages 83–91. ACM, 2012
[6] A. Nöhrer and A. Egyed. Optimizing User Guidance during Decision-Making. In

Software Product Lines, 15th International Conference, Munich, Germany, 2011
[5] A. Egyed, A. Demuth, A. Ghabi, R. E. Lopez-Herrejon, P. Mäder, A. Nöhrer, and

A. Reder. Fine-Tuning Model Transformation: Change Propagation in Context of
Consistency, Completeness, and Human Guidance. In Theory and Practice of Model

Transformations - 4th International Conference, Zurich, Switzerland, pages 1–14,
2011

[4] A. Nöhrer, A. Reder, and A. Egyed. Positive Effects of Utilizing Relationships between
Inconsistencies for more Effective Inconsistency Resolution: NIER Track. In R. N.
Taylor, H. Gall, and N. Medvidovic, editors, ICSE, pages 864–867. ACM, 2011

[3] A. Nöhrer and A. Egyed. C2O: A Tool for Guided Decision-making. In 25th Inter-

national Conference on Automated Software Engineering, Antwerp, Belgium, pages
363–364, 2010

[2] A. Nöhrer and A. Egyed. Utilizing the Relationships Between Inconsistencies for more
Effective Inconsistency Resolution. In 3rd Workshop on Living with Inconsistencies in

Software Development, Colocated with ASE, Antwerp, Belgium, pages 39–43. CEUR
Workshop Proceedings Vol-661, 2010

[1] A. Nöhrer and A. Egyed. Conflict Resolution Strategies during Product Configura-
tion. In Fourth International Workshop on Variability Modelling of Software-Intensive

Systems, Linz, Austria, volume 37 of ICB Research Report, pages 107–114. Universität
Duisburg-Essen, 2010

